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CHAPTER 1

Introduction

ADAM is a library and command line tool that enables the use of Apache Spark to parallelize genomic data analysis
across cluster/cloud computing environments. ADAM uses a set of schemas to describe genomic sequences, reads,
variants/genotypes, and features, and can be used with data in legacy genomic file formats such as SAM/BAM/CRAM,
BED/GFF3/GTF, and VCF, as well as data stored in the columnar Apache Parquet format. On a single node, ADAM
provides competitive performance to optimized multi-threaded tools, while enabling scale out to clusters with more
than a thousand cores. ADAM’s APIs can be used from Scala, Java, Python, R, and SQL.

1.1 The ADAM/Big Data Genomics Ecosystem

ADAM builds upon the open source Apache Spark, Apache Avro, and Apache Parquet projects. Additionally, ADAM
can be deployed for both interactive and production workflows using a variety of platforms. A diagram of the ecosys-
tem of tools and libraries that ADAM builds on and the tools that build upon the ADAM APIs can be found below.

As the diagram shows, beyond the ADAM CLI, there are a number of tools built using ADAM’s core APIs:

• Avocado is a variant caller built on top of ADAM for germline and somatic calling

• Cannoli uses ADAM’s pipe API to parallelize common single-node genomics tools (e.g., BWA, bowtie2, Free-
Bayes)

• DECA is a reimplementation of the XHMM copy number variant caller on top of ADAM/Apache Spark

• Gnocchi provides primitives for running GWAS/eQTL tests on large genotype/phenotype datasets using ADAM

• Lime provides a parallel implementation of genomic set theoretic primitives using the region join API

• Mango is a library for visualizing large scale genomics data with interactive latencies and serving data using the
GA4GH schemas

1.1.1 Architecture Overview

ADAM is architected as an extensible, parallel framework for working with both aligned and unaligned genomic data
using Apache Spark. Unlike traditional genomics tools, ADAM is built as a modular stack, where a set of schemas
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Fig. 1.1: The ADAM ecosystem.

define and provide a narrow waist. This stack architecture enables the support of a wide range of data formats and
optimized query patterns without changing the data structures and query patterns that users are programming against.

ADAM’s architecture was introduced as a response to the challenges processing the growing volume of genomic se-
quencing data in a reasonable timeframe (Schadt et al. 2010). While the per-run latency of current genomic pipelines
such as the GATK could be improved by manually partitioning the input dataset and distributing work, native sup-
port for distributed computing was not provided. As a stopgap solution, projects like Cloudburst (Schatz 2009) and
Crossbow (Langmead et al. 2009) have ported individual analytics tools to run on top of Hadoop. While this approach
has served well for proofs of concept, this approach provides poor abstractions for application developers. These poor
abstractions make it difficult for bioinformatics developers to create novel distributed genomic analyses, and does little
to attack sources of inefficiency or incorrectness in distributed genomics pipelines.

ADAM’s architecture reconsiders how we build software for processing genomic data by eliminating the monolithic
architectures that are driven by the underlying flat file formats used in genomics. These architectures impose significant
restrictions, including:

• These implementations are locked to a single node processing model. Even the GATK’s “map-reduce” styled
walker API (McKenna et al. 2010) is limited to natively support processing on a single node. While these jobs
can be manually partitioned and run in a distributed setting, manual partitioning can lead to imbalance in work
distribution and makes it difficult to run algorithms that require aggregating data across all partitions, and lacks
the fault tolerance provided by modern distributed systems such as Apache Hadoop or Spark (Zaharia et al.
2012).

• Most of these implementations assume invariants about the sorted order of records on disk. This “stack smash-
ing” (specifically, the layout of data is used to accelerate a processing stage) can lead to bugs when data does
not cleanly map to the assumed sort order. Additionally, since these sort order invariants are rarely explicit and
vary from tool to tool, pipelines assembled from disparate tools can be brittle.

• Additionally, while these invariants are intended to improve performance, they do this at the cost of opacity. If
we can express the query patterns that are accelerated by these invariants at a higher level, then we can achieve
both a better programming environment and enable various query optimizations.
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At the core of ADAM, users use the ADAMContext to load data as GenomicRDDs, which they can then manipulate.
In the GenomicRDD class hierarchy, we provide several classes that contain functionality that is applicable to all
genomic datatypes, such as coordinate-space joins, the pipe API, and genomic metadata management.

1.1.2 The ADAM Stack Model

The stack model that ADAM is based upon was introduced in (Massie et al. 2013) and further refined in (F. A.
Nothaft et al. 2015), and is depicted in the figure below. This stack model separates computational patterns from
the data model, and the data model from the serialized representation of the data on disk. This enables developers
to write queries that run seamlessly on a single node or on a distributed cluster, on legacy genomics data files or
on data stored in a high performance columnar storage format, and on sorted or unsorted data, without making any
modifications to their query. Additionally, this allows developers to write at a higher level of abstraction without
sacrificing performance, since we have the freedom to change the implementation of a layer of the stack in order to
improve the performance of a given query.

Fig. 1.2: The ADAM Stack Model

This stack model is divided into seven levels. Starting from the bottom, these are:

1. The physical storage layer is the type of storage media (e.g., hard disk/solid state drives) that are used to store
the data.

2. The data distribution layer determines how data are made accessible to all of the nodes in the cluster. Data
may be made accessible through a POSIX-compliant shared file system such as NFS (Sandberg et al. 1985), a
non-POSIX file system that implements Hadoop’s APIs (e.g., HDFS), or through a block-store, such as Amazon
S3.

3. The materialized data layer defines how the logical data in a single record maps to bytes on disk. We advo-
cate for the use of Apache Parquet, a high performance columnar storage format based off of Google’s Dremel
database (Melnik et al. 2010). To support conventional genomics file formats, we exchange the Parquet im-
plementation of this layer with a layer that maps the given schema into a traditional genomics file format (e.g.,
SAM/BAM/CRAM, BED/GTF/GFF/NarrowPeak, VCF).

4. The schema layer defines the logical representation of a datatype.

1.1. The ADAM/Big Data Genomics Ecosystem 3
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5. The evidence access layer is the software layer that implements and executes queries against data stored on disk.
While ADAM was originally built around Apache Spark’s Resilient Distributed Dataset (RDD) API (Zaharia et
al. 2012), ADAM has recently enabled the use of Spark SQL (Armbrust et al. 2015) for evidence access and
query.

6. The presentation layer provides high level abstractions for interacting with a parallel collection of genomic data.
In ADAM, we implement this layer through the GenomicRDD classes. This layer presents users with a view of
the metadata associated with a collection of genomic data, and APIs for transforming and joining genomic data.
Additionally, this is the layer where we provide cross-language support.

7. The application layer is the layer where a user writes their application on top of the provided APIs.

Our stack model derives its inspiration from the layered Open Systems Interconnection (OSI) networking stack (Zim-
mermann 1980), which eventually served as the inspiration for the Internet Protocol stack, and from the concept of
data independence in database systems. We see this approach as an alternative to the “stack smashing” commonly
seen in genomics APIs, such as the GATK’s “walker” interface (McKenna et al. 2010). In these APIs, implementation
details about the layout of data on disk (are the data sorted?) are propagated up to the application layer of the API and
exposed to user code. This limits the sorts of queries that can be expressed efficiently to queries that can easily be run
against linear sorted data. Additionally, these “smashed stacks” typically expose very low level APIs, such as a sorted
iterator, which increases the cost to implementing a query and can lead to trivial mistakes.

1.1.3 The bdg-formats schemas

The schemas that comprise ADAM’s narrow waist are defined in the bdg-formats project, using the Apache Avro
schema description language. This schema definition language automatically generates implementations of this
schema for multiple common languages, including Java, C, C++, and Python. bdg-formats contains several core
schemas:

• The AlignmentRecord schema represents a genomic read, along with that read’s alignment to a reference
genome, if available.

• The Feature schema represents a generic genomic feature. This record can be used to tag a region of the genome
with an annotation, such as coverage observed over that region, or the coordinates of an exon.

• The Fragment schema represents a set of read alignments that came from a single sequenced fragment.

• The Genotype schema represents a genotype call, along with annotations about the quality/read support of the
called genotype.

• The NucleotideContigFragment schema represents a section of a contig’s sequence.

• The Variant schema represents a sequence variant, along with statistics about that variant’s support across a
group of samples, and annotations about the effect of the variant.

The bdg-formats schemas are designed so that common fields are easy to query, while maintaining extensibility and
the ability to interoperate with common genomics file formats. Where necessary, the bdg-formats schemas are nested,
which allows for the description of complex nested features and groupings (such as the Fragment record, which groups
together AlignmentRecords). All fields in the bdg-formats schemas are nullable, and the schemas themselves do not
contain invariants around valid values for a field. Instead, we validate data on ingress and egress to/from a conventional
genomic file format. This allows users to take advantage of features such as field projection, which can improve the
performance of queries like flagstat by an order of magnitude.

1.1.4 Interacting with data through ADAM’s evidence access layer

ADAM exposes access to distributed datasets of genomic data through the ADAMContext entrypoint. The ADAM-
Context wraps Apache Spark’s SparkContext, which tracks the configuration and state of the current running Spark
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application. On top of the SparkContext, the ADAMContext provides data loading functions which yield Genomi-
cRDDs. The GenomicRDD classes provide a wrapper around Apache Spark’s two APIs for manipulating distributed
datasets: the legacy Resilient Distributed Dataset (Zaharia et al. 2012) and the new Spark SQL Dataset/DataFrame
API (Armbrust et al. 2015). Additionally, the GenomicRDD is enriched with genomics-specific metadata such as
computational lineage and sample metadata, and optimized genomics-specific query patterns such as region joins and
the auto-parallelizing pipe API for running legacy tools using Apache Spark.

Fig. 1.3: The GenomicRDD Class Hierarchy

All GenomicRDDs include a sequence dictionary which describes the reference genome that the data in the RDD are
aligned to, if one is known. Additionally, RecordGroupGenomicRDD store a dictionary with read groups that are
attached to the reads/fragments. Similarly, the MultisampleGenomicRDD includes a list of samples who are present
in the dataset.

1.1.5 Building ADAM from Source

You will need to have Apache Maven version 3.1.1 or later installed in order to build ADAM.

Note: The default configuration is for Hadoop 2.7.3. If building against a different version of Hadoop,
please pass -Dhadoop.version=<HADOOP_VERSION> to the Maven command. ADAM will cross-
build for both Spark 1.x and 2.x, but builds by default against Spark 1.6.3. To build for Spark 2, run the
./scripts/move_to_spark2.sh script.

git clone https://github.com/bigdatagenomics/adam.git
cd adam
export MAVEN_OPTS="-Xmx512m -XX:MaxPermSize=128m"
mvn clean package -DskipTests

Outputs

...
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 9.647s
[INFO] Finished at: Thu May 23 15:50:42 PDT 2013
[INFO] Final Memory: 19M/81M
[INFO] ------------------------------------------------------------------------

You might want to take a peek at the scripts/jenkins-test script and give it a run. It will fetch a mouse
chromosome, encode it to ADAM reads and pileups, run flagstat, etc. We use this script to test that ADAM is working
correctly.

1.1. The ADAM/Big Data Genomics Ecosystem 5
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Running ADAM

ADAM is packaged as an überjar and includes all necessary dependencies, except for Apache Hadoop and Apache
Spark.

You might want to add the following to your .bashrc to make running ADAM easier:

alias adam-submit="${ADAM_HOME}/bin/adam-submit"
alias adam-shell="${ADAM_HOME}/bin/adam-shell"

$ADAM_HOME should be the path to where you have checked ADAM out on your local filesystem. The first
alias should be used for running ADAM jobs that operate locally. The latter two aliases call scripts that wrap the
spark-submit and spark-shell commands to set up ADAM. You will need to have the Spark binaries on your
system; prebuilt binaries can be downloaded from the Spark website. Our continuous integration setup builds ADAM
against Spark versions 1.6.1 and 2.0.0, Scala versions 2.10 and 2.11, and Hadoop versions 2.3.0 and 2.6.0.

Once this alias is in place, you can run ADAM by simply typing adam-submit at the command line.

adam-submit

Building for Python

ADAM can be installed using the Pip package manager, or from source. To build and test ADAM’s Python bindings,
enable the python profile:

mvn -Ppython package

This will enable the adam-python module as part of the ADAM build. This module uses Maven to invoke a
Makefile that builds a Python egg and runs tests. To build this module, we require either an active Conda or virtualenv
environment.

To setup and activate a Conda environment, run:

conda create -n adam python=2.7 anaconda
source activate adam

To setup and activate a virtualenv environment, run:

virtualenv adam
. adam/bin/activate

Additionally, to run tests, the PySpark dependencies must be on the Python module load path and the ADAM JARs
must be built and provided to PySpark. This can be done with the following bash commands:

# add pyspark to the python path
PY4J_ZIP="$(ls -1 "${SPARK_HOME}/python/lib" | grep py4j)"
export PYTHONPATH=${SPARK_HOME}/python:${SPARK_HOME}/python/lib/${PY4J_ZIP}:$
→˓{PYTHONPATH}

# put adam jar on the pyspark path
ASSEMBLY_DIR="${ADAM_HOME}/adam-assembly/target"
ASSEMBLY_JAR="$(ls -1 "$ASSEMBLY_DIR" | grep "^adam[0-9A-Za-z\.\_-]*\.jar$" | grep -v
→˓-e javadoc -e sources || true)"
export PYSPARK_SUBMIT_ARGS="--jars ${ASSEMBLY_DIR}/${ASSEMBLY_JAR} --driver-class-
→˓path ${ASSEMBLY_DIR}/${ASSEMBLY_JAR} pyspark-shell"
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This assumes that the ADAM JARs have already been built. Additionally, we require pytest to be installed. The
adam-python makefile can install this dependency. Once you have an active virtualenv or Conda environment, run:

cd adam-python
make prepare

Building for R

ADAM supports SparkR, for Spark 2.1.0 and onwards. To build and test ADAM’s R bindings, enable the r profile:

mvn -Pr package

This will enable the adam-r module as part of the ADAM build. This module uses Maven to invoke the R exe-
cutable to build the bdg.adam package and run tests. The build requires the testthat, devtools and roxygen
packages

R -e "install.packages('testthat', repos='http://cran.rstudio.com/')"
R -e "install.packages('roxygen2', repos='http://cran.rstudio.com/')"
R -e "install.packages('devtools', repos='http://cran.rstudio.com/')"

The build also requires you to have the SparkR package installed, and the ADAM JARs must be built and provided
to SparkR. This can be done with the following bash commands:

# put adam jar on the SparkR path
ASSEMBLY_DIR="${ADAM_HOME}/adam-assembly/target"
ASSEMBLY_JAR="$(ls -1 "$ASSEMBLY_DIR" | grep "^adam[0-9A-Za-z\_\.-]*\.jar$" | grep -v
→˓javadoc | grep -v sources || true)"
export SPARKR_SUBMIT_ARGS="--jars ${ASSEMBLY_DIR}/${ASSEMBLY_JAR} --driver-class-path
→˓${ASSEMBLY_DIR}/${ASSEMBLY_JAR} sparkr-shell"

Note that the ASSEMBLY_DIR and ASSEMBLY_JAR lines are the same as for the Python build. As with the Python
build, this assumes that the ADAM JARs have already been built.

1.1.6 Installing ADAM using Pip

ADAM is available through the Python Package Index and thus can be installed using pip. To install ADAM using
pip, run:

pip install bdgenomics.adam

Pip will install the bdgenomics.adam Python binding, as well as the ADAM CLI.

1.1.7 Running an example command

flagstat

Once you have data converted to ADAM, you can gather statistics from the ADAM file using flagstat. This command
will output stats identically to the samtools flagstat command.

./bin/adam-submit flagstat NA12878_chr20.adam

Outputs:

1.1. The ADAM/Big Data Genomics Ecosystem 7
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51554029 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 duplicates
50849935 + 0 mapped (98.63%:0.00%)
51554029 + 0 paired in sequencing
25778679 + 0 read1
25775350 + 0 read2
49874394 + 0 properly paired (96.74%:0.00%)
50145841 + 0 with itself and mate mapped
704094 + 0 singletons (1.37%:0.00%)
158721 + 0 with mate mapped to a different chr
105812 + 0 with mate mapped to a different chr (mapQ>=5)

In practice, you will find that the ADAM flagstat command takes orders of magnitude less time than samtools
to compute these statistics. For example, on a MacBook Pro, the command above took 17 seconds to run while
samtools flagstat NA12878_chr20.bam took 55 seconds. On larger files, the difference in speed is even
more dramatic. ADAM is faster because it is multi-threaded, distributed and uses a columnar storage format (with a
projected schema that only materializes the read flags instead of the whole read).

Running on a cluster

We provide the adam-submit and adam-shell commands under the bin directory. These can be used to submit
ADAM jobs to a spark cluster, or to run ADAM interactively.

1.1.8 Benchmarks

Algorithm Performance

To test the efficiency of ADAM’s implementations of the various algorithms that are used in our variant calling
pipeline, we ran strong scaling experiments. In this experiment, we used the high coverage genome NA12878 from the
1000 Genomes project. We held the executor configuration constant, and stepped from one to four executors before
doubling until we reached 32 executors. Each executor had 16 hyperthreaded cores (32 concurrent threads) and was
allocated 200 gigabytes of memory.

In general, most of the algorithms in ADAM scale linearly as the amount of compute resources is increased. The
significant exception is BQSR, which is explained by the large broadcast which runs during BQSR. The broadcast
introduces a serial step that runs for several minutes, as the multiple gigabyte mask table is broadcast to all of the
nodes in the cluster. The figures below break these results down and compares them to the latest implementation of
these algorithms in the GATK4.

As our benchmarks demonstrate, ADAM’s implementations of the various algorithms in the standard germline reads-
to-variants pipeline are more performant than the same algorithms implemented in the GATK. ADAM outperforms
the GATK when running equivalent implementations of BQSR (1.4x speedup) and duplicate marking (1.1x speedup).
To improve the performance of duplicate marking, we added a variant of the duplicate marking algorithm that operates
on reads that are grouped by sequencing fragment. By optimizing for reads that are grouped with the other reads from
their fragment, we can eliminate the first shuffle in duplicate marking, which reassembles reads by read-pair. This
optimization is common in duplicate markers, as paired-end aligners will typically emit a SAM or BAM file where
consecutive reads are from the same sequencing fragment.

1.1.9 Storage Size

ADAM uses Apache Parquet as a way to store genomic data. This is in addition to our support for conventional
genomic file formats. Parquet is an efficient columnar storage system that is widely used in the analytics ecosystem,
and integrates with a variety of data management tools and query engines. Parquet provides improved storage capacity

8 Chapter 1. Introduction

https://parquet.apache.org


bdgenomics.workflows Documentation, Release 0.23.0-SNAPSHOT

Fig. 1.4: Strong scaling characteristics of duplicate marking
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Fig. 1.5: Strong scaling characteristics of base quality recalibration
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Fig. 1.6: Strong scaling characteristics of INDEL Realignment
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relative to several conventional genomics data storage formats. Here, we look at the storage cost of aligned reads,
features, and variants.

Aligned Reads

In this benchmark, we have stored a copy of NA12878 aligned to the GRCh37 reference genome using BWA. We store
this genome in BAM, CRAM, and ADAM, using the default compression settings for each. BAM and CRAM files
were generated using htslib. This read file was sequenced at approximately 60x coverage across the whole genome.

Fig. 1.7: Storage cost of a 60x coverage WGS aligned dataset

ADAM provides a 20% improvement in storage size over BAM, while CRAM achieves a 43% improvement in storage
cost. CRAM achieves a higher compression ratio by using reference-based compression techniques to minimize the
amount of data stored on disk.

Features

Here, we benchmark both the GFF3 and BED formats. For GFF3, we use the ENSEMBL GRCh38 genome annotation
file. For BED, we use genome-wide coverage counts generated from the NA12878 dataset used in the aligned read
benchmarks.

For the genome annotation file, ADAM provides a 20% improvement in storage size relative to the compressed GFF3
file.

12 Chapter 1. Introduction



bdgenomics.workflows Documentation, Release 0.23.0-SNAPSHOT

Fig. 1.8: Storage cost of genome annotations
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Fig. 1.9: Storage cost of coverage data
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For the coverage data, ADAM provides a 45% improvement in storage size relative to the compressed BED file.

Genomic Variants

In this benchmark, we used the 1,000 Genomes phase 3 data release VCFs. We compared GZIP-compressed VCF and
uncompressed VCF to ADAM.

Fig. 1.10: Storage cost of variant data

Compressed VCF is approximately 10% smaller than genotype data stored as Parquet.

1.1.10 Deploying ADAM

Running ADAM on AWS EC2 using CGCloud

CGCloud provides an automated means to create a cluster on EC2 for use with ADAM.

CGCloud lets you automate the creation, management and provisioning of VMs and clusters of VMs in Amazon EC2.
The CGCloud plugin for Spark lets you setup a fully configured Apache Spark cluster in EC2.

1.1. The ADAM/Big Data Genomics Ecosystem 15
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Prior to following these instructions, make sure you have set up your AWS account and know your AWS access keys.
See https://aws.amazon.com/ for details.

Configure CGCloud

Begin by reading the CGcloud readme.

Next, configure CGCloud core and then install the CGcloud spark plugin.

One modification to CGCloud install instructions: replace the two pip calls
pip install cgcloud-core and pip install cgcloud-spark with the single command:

pip install cgcloud-spark==1.6.0

which will install the correct version of both cgcloud-core and cgcloud-spark.

Note, the steps to register your ssh key and create the template boxes only need to be done once.

cgcloud register-key ~/.ssh/id_rsa.pub
cgcloud create generic-ubuntu-trusty-box
cgcloud create -IT spark-box

Launch a cluster

Spin up a Spark cluster named cluster1 with one leader and two worker nodes of instance type m3.large with
the command:

cgcloud create-cluster spark -c cluster1 -s 2 -t m3.large

Once running, you can ssh to spark-master with the command:

cgcloud ssh -c cluster1 spark-master

Spark is already installed on the spark-master machine and slaves, test it by starting a spark-shell.

spark-shell
exit()

Install ADAM

To use the ADAM application on top of Spark, we need to download and install ADAM on spark-master. From
the command line on spark-master download a release here. As of this writing, CGCloud supports Spark 1.6.2,
not Spark 2.x, so download the Spark 1.x Scala2.10 release:

wget https://repo1.maven.org/maven2/org/bdgenomics/adam/adam-distribution_2.10/0.20.0/
→˓adam-distribution_2.10-0.20.0-bin.tar.gz
tar -xvfz adam-distribution_2.10-0.20.0-bin.tar.gz

You can now run ./bin/adam-submit and ./bin/adam-shell using your EC2 cluster.
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Input and Output data on HDFS and S3

Spark requires a file system, such as HDFS or a network file mount, that all machines can access. The CGCloud EC2
Spark cluster you just created is already running HDFS.

The typical flow of data to and from your ADAM application on EC2 will be:

• Upload data to AWS S3

• Transfer from S3 to the HDFS on your cluster

• Compute with ADAM, write output to HDFS

• Copy data you wish to persist for later use to S3

For small test files you may wish to skip S3 by uploading directly to spark-master using scp and then copying to
HDFS using:

hadoop fs -put sample1.bam /datadir/

From the ADAM shell, or as a parameter to ADAM submit, you would refer to HDFS URLs like this:

adam-submit \
transformAlignments \
hdfs://spark-master/work_dir/sample1.bam \
hdfs://spark-master/work_dir/sample1.adam

Bulk Transfer between HDFS and S3

To transfer large amounts of data back and forth from S3 to HDFS, we suggest using Conductor. It is also possible to
directly use AWS S3 as a distributed file system, but with some loss of performance.

Directly accessing data stored in S3

To directly access data stored in S3, we can leverage one of the Hadoop FileSystem API implementations that access
S3. Specifically, we recommend using the S3a file system. To do this, you will need to configure your Spark job to use
S3a. If you are using a vendor-supported Spark distribution like Amazon EMR or Databricks, your Spark distribution
may already have the S3a file system installed. If not, you will need to add JARs that contain the classes needed to
support the S3a file system. For most Spark distributions built for Apache Hadoop 2.6 or higher, you will need to add
the following dependencies:

• com.amazonaws:aws-java-sdk-pom:1.10.34

• org.apache.hadoop:hadoop-aws:2.7.4

Instead of downloading these JARs, you can ask Spark to install them at runtime using the --packages flag. Addi-
tionally, if you are using the S3a file system, your file paths will need to begin with the s3a:// scheme:

adam-submit \
--packages com.amazonaws:aws-java-sdk-pom:1.10.34,org.apache.hadoop:hadoop-aws:2.7.

→˓4 \
-- \
transformAlignments \
s3a://my_bucket/my_reads.adam \
s3a://my_bucket/my_new_reads.adam

1.1. The ADAM/Big Data Genomics Ecosystem 17

https://github.com/BD2KGenomics/conductor
https://wiki.apache.org/hadoop/AmazonS3
https://aws.amazon.com/emr/
https://databricks.com/
http://search.maven.org/#artifactdetails%7Ccom.amazonaws%7Caws-java-sdk-pom%7C1.10.34%7Cjar
http://search.maven.org/#artifactdetails%7Corg.apache.hadoop%7Chadoop-aws%7C2.7.4%7Cjar


bdgenomics.workflows Documentation, Release 0.23.0-SNAPSHOT

If you are loading a BAM, CRAM, or VCF file, you will need to add an additional JAR. This is because the code that
loads data stored in these file formats uses Java’s nio package to read index files. Java’s nio system allows users
to specify a “file system provider,” which implements nio’s file system operations on non-POSIX file systems like
HDFS or S3. To use these file formats with the s3a:// scheme, you should include the following dependency:

• net.fnothaft:jsr203-s3a:0.0.1

You will need to do this even if you are not using the index for said format.

Terminate Cluster

Shutdown the cluster using:

cgcloud terminate-cluster -c cluster1 spark

CGCloud options and Spot Instances

View help docs for all options of the cgcloud create-cluster command:

cgcloud create-cluster -h

In particular, note the --spot-bid and related spot options to utilize AWS spot instances in order to save on costs. To
avoid unintended costs, it is a good idea to use the AWS console to double check that your instances have terminated.

Accessing the Spark GUI

In order to view the Spark server or application GUI pages on port 4040 and 8080 on spark-master, go to Se-
curity Groups in the AWS console and open inbound TCP for those ports from your local IP address. Find the IP
address of spark-master, which is part of the Linux command prompt. On your local machine, you can then open
http://ip_of_spark_master:4040/ in a web browser, where ip_of_spark_master is replaced with
the IP address you found.

1.1.11 Running ADAM on CDH 5, HDP, and other YARN based Distros

Apache Hadoop YARN is a widely used scheduler in the Hadoop ecosystem. YARN stands for “Yet Another Resource
Negotiator”, and the YARN architecture is described in (Vavilapalli et al. 2013). YARN is used in several common
Hadoop distributions, including the Cloudera Hadoop Distribution (CDH) and the Hortonworks Data Platform (HDP).
YARN is supported natively in Spark.

The ADAM CLI and shell can both be run on YARN. The ADAM CLI can be run in both Spark’s YARN cluster
and client modes, while the ADAM shell can only be run in client mode. In the cluster mode, the Spark
driver runs in the YARN ApplicationMaster container. In the client mode, the Spark driver runs in the
submitting process. Since the Spark driver for the Spark/ADAM shell takes input on stdin, it cannot run in cluster
mode.

To run the ADAM CLI in YARN cluster mode, run the following command:

./bin/adam-submit \
--master yarn \
--deploy-mode cluster \
-- \
<adam_command_name> [options] \
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In the adam-submit command, all options before the -- are passed to the spark-submit script, which launches
the Spark job. To run in client mode, we simply change the deploy-mode to client:

./bin/adam-submit \
--master yarn \
--deploy-mode client \
-- \
<adam_command_name> [options] \

In the adam-shell command, all of the arguments are passed to the spark-shell command. Thus, to run the
adam-shell on YARN, we run:

./bin/adam-shell \
--master yarn \
--deploy-mode client

All of these commands assume that the Spark assembly you are using is properly configured for your YARN de-
ployment. Typically, if your Spark assembly is properly configured to use YARN, there will be a symbolic link at
${SPARK_HOME}/conf/yarn-conf/ that points to the core Hadoop/YARN configuration. Though, this may
vary by the distribution you are running.

The full list of configuration options for running Spark-on-YARN can be found online. Most of the standard con-
figurations are consistent between Spark Standalone and Spark-on-YARN. One important configuration option to be
aware of is the YARN memory overhead parameter. From 1.5.0 onwards, Spark makes aggressive use of off-heap
memory allocation in the JVM. These allocations may cause the amount of memory taken up by a single executor (or,
theoretically, the driver) to exceed the --driver-memory/--executor-memory parameters. These parameters
are what Spark provides as a memory resource request to YARN. By default, if one of your Spark containers (an
executors or the driver) exceeds its memory request, YARN will kill the container by sending a SIGTERM. This can
cause jobs to fail. To eliminate this issue, you can set the spark.yarn.<role>.memoryOverhead parameter,
where <role> is one of driver or executor. This parameter is used by Spark to increase its resource request to
YARN over the JVM Heap size indicated by --driver-memory or --executor-memory.

As a final example, to run the ADAM transformAlignments CLI using YARN cluster mode on a 64 node cluster with
one executor per node and a 2GB per executor overhead, we would run:

./bin/adam-submit \
--master yarn \
--deploy-mode cluster \
--driver-memory 200g \
--executor-memory 200g \
--conf spark.driver.cores=16 \
--conf spark.executor.cores=16 \
--conf spark.yarn.executor.memoryOverhead=2048 \
--conf spark.executor.instances=64 \
-- \
transformAlignments in.sam out.adam

In this example, we are allocating 200GB of JVM heap space per executor and for the driver, and we are telling Spark
to request 16 cores per executor and for the driver.

1.1.12 Running ADAM on Toil

Toil is a workflow management tool that supports running multi-tool workflows. Unlike traditional workflow managers
that are limited to supporting jobs that run on a single node, Toil includes support for clusters of long lived services
through the Service Job abstraction. This abstraction enables workflows that mix Spark-based tools like ADAM in
with traditional, single-node tools. (Vivian et al. 2016) describes the Toil architecture and demonstrates the use of
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Toil at scale in the Amazon Web Services EC2 cloud. Toil can be run on various on-premises High Performance
Computing schedulers, and on the Amazon EC2 and Microsoft Azure clouds. A quick start guide to deploying Toil in
the cloud or in an on-premises cluster can be found here.

toil-lib is a library downstream from Toil that provides common functionality that is useful across varied genomics
workflows. There are two useful modules that help to set up an Apache Spark cluster, and to run an ADAM job:

• toil_lib.spark: This module contains all the code necessary to set up a set of Service Jobs that launch
and run an Apache Spark cluster backed by the Apache Hadoop Distributed File System (HDFS).

• toil_lib.tools.spark_tools: This module contains functions that run ADAM in Toil using Docker,
as well as Conductor, a tool for running transfers between HDFS and Amazon’s S3 storage service.

Several example workflows that run ADAM in Toil can be found in toil-scripts. These workflows include:

• adam-kmers: this workflow was demonstrated in (Vivian et al. 2016) and sets up a Spark cluster which then
runs ADAM’s `countKmers CLI <#countKmers>‘__.

• adam-pipeline: this workflow runs several stages in the ADAM `transformAlignments CLI <#transfor-
mAlignments>‘__. This pipeline is the ADAM equivalent to the GATK’s “Best Practice” read preprocessing
pipeline. We then stitch together this pipeline with BWA-MEM and the GATK in the adam-gatk-pipeline.

An example workflow: toil_scripts.adam_kmers.count_kmers

For an example of how to use ADAM with Toil, let us look at the toil_scripts.adam_kmers.count_kmers module. This
module has three parts:

• A main method that configures and launches a Toil workflow.

• A job function that launches both the Spark cluster service and the ADAM job.

• A child job function that calls ADAM and Conductor to transfer a BAM file from S3, convert that BAM file to
Parquet, count k-mers, and upload the k-mer counts back to S3.

Configuring and launching Toil

Toil takes most of its configuration from the command line. To make this easy, Toil includes a function in the toil.
job.Job class to register Toil’s argument parsing code with the Python standard ‘‘argparse‘ <https://docs.python.
org/2/library/argparse.html>‘__ library. E.g., in ‘‘count_kmers.py‘ <https://github.com/BD2KGenomics/toil-scripts/
blob/master/src/toil_scripts/adam_kmers/count_kmers.py#L183-L214>‘__, we set up our arguments and then add the
Toil specific arguments by:

parser = argparse.ArgumentParser()

# add parser arguments
parser.add_argument('--input_path',

help='The full path to the input SAM/BAM/ADAM/FASTQ file.')
parser.add_argument('--output-path',

help='full path where final results will be output.')
parser.add_argument('--kmer-length',

help='Length to use for k-mer counting. Defaults to 20.',
default=20,
type=int)

parser.add_argument('--spark-conf',
help='Optional configuration to pass to Spark commands. Either

→˓this or --workers must be specified.',
default=None)

parser.add_argument('--memory',
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help='Optional memory configuration for Spark workers/driver.
→˓This must be specified if --workers is specified.',

default=None,
type=int)

parser.add_argument('--cores',
help='Optional core configuration for Spark workers/driver. This

→˓must be specified if --workers is specified.',
default=None,
type=int)

parser.add_argument('--workers',
help='Number of workers to spin up in Toil. Either this or --

→˓spark-conf must be specified. If this is specified, --memory and --cores must be
→˓specified.',

default=None,
type=int)

parser.add_argument('--sudo',
help='Run docker containers with sudo. Defaults to False.',
default=False,
action='store_true')

Job.Runner.addToilOptions(parser)

Then, we parse the arguments and start Toil:

args = parser.parse_args()
Job.Runner.startToil(Job.wrapJobFn(kmer_dag,

args.kmer_length,
args.input_path,
args.output_path,
args.spark_conf,
args.workers,
args.cores,
args.memory,
args.sudo,
checkpoint=True), args)

Note that we are passing the parsed arguments to the Job.Runner.startToil function. The other argument that
we are passing is the Job that we would like Toil to run. In this example, Toil is wrapping the kmer_dag function
(discussed in the next section) up as a Job. The Job.wrapJobFn call takes the kmer_dag function and all of the
arguments that are being passed and serializes them so they can be run locally or on a remote node. Additionally,
we pass the optional argument checkpoint=True. This argument indicates that the kmer_dag Job function is a
“checkpoint” job. If a job is a checkpoint job and any of its children jobs fail, then we are saying that the workflow
can be successfully rerun from this point. In Toil, service jobs should always be launched from a checkpointed job in
order to allow the service jobs to successfully resume after a service job failure.

More detailed information about launching a Toil workflow can be found in the Toil documentation.

Launching a Spark Service

In the toil_scripts.adam_kmers.count_kmers example, we wrap the kmer_dag function as a job, and
then use this function to launch a Spark cluster as a set of service jobs using the toil_lib.spark module. Once
we’ve done that, we also launch a job to run ADAM by starting the download_count_upload child job function.
We launch the Spark service cluster by calling the spawn_spark_clusterfunction, which was imported from the
toil_lib.spark module:
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master_hostname = spawn_spark_cluster(job,
workers,
cores)

This function takes in three parameters:

• job: A handle to the currently running Toil Job. This is used to enqueue the service jobs needed to start the
Spark cluster.

• workers: The number of Spark workers to allocate.

• cores: The number of cores to request per worker/leader node.

When called, this method does not return a hostname string. Rather, it returns a promise for the hostname string. This
promise is not valid inside of the kmer_dag job, but will be valid in the child job (download_count_upload)
that runs Spark. Toil cannot guarantee that the Spark Service job will start until after the job that enqueues it completes.

Finally, we enqueue the child job that runs ADAM and Conductor:

job.addChildJobFn(download_count_upload,
masterHostname,
input_file, output_file, kmer_length,
spark_conf, memory, sudo)

Detailed documentation for the toil_lib.spark module can be found in the toil-lib docs.

Running ADAM and other Spark applications

Once we have enqueued the Spark service jobs and the child job that interacts with the services, we can launch Spark
applications from the child job. In our example application, our child job function does the following work:

1. We check to see if the input file is already in HDFS:

if master_ip is not None:
hdfs_dir = "hdfs://{0}:{1}/".format(master_ip, HDFS_MASTER_PORT)

else:
_log.warn('Master IP is not set. If default filesystem is not set, jobs may fail.

→˓')
hdfs_dir = ""

2. If it is not in HDFS, we copy it in using Conductor:

# if the file is not already in hdfs, copy it in
hdfs_input_file = hdfs_dir
if input_file.startswith("s3://"):

# append the s3 file name to our hdfs path
hdfs_input_file += input_file.split("/")[-1]

# run the download
_log.info("Downloading input file %s to %s.", input_file, hdfs_input_file)
call_conductor(master_ip, input_file, hdfs_input_file,

memory=memory, override_parameters=spark_conf)

3. We check to see if the file is a Parquet file, and convert it to Parquet if it is not:

# do we need to convert to adam?
if (hdfs_input_file.endswith('.bam') or
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hdfs_input_file.endswith('.sam') or
hdfs_input_file.endswith('.fq') or
hdfs_input_file.endswith('.fastq')):

hdfs_tmp_file = hdfs_input_file

# change the file extension to adam
hdfs_input_file = '.'.join(hdfs_input_file.split('.')[:-1].append('adam'))

# convert the file
_log.info('Converting %s into ADAM format at %s.', hdfs_tmp_file, hdfs_input_file)
call_adam(master_ip,

['transformAlignments',
hdfs_tmp_file, hdfs_input_file],

memory=memory, override_parameters=spark_conf)

4. We use the ADAM CLI to count the *k*-mers in the file:

# run k-mer counting
_log.info('Counting %d-mers in %s, and saving to %s.',

kmer_length, hdfs_input_file, hdfs_output_file)
call_adam(master_ip,

['countKmers',
hdfs_input_file, hdfs_output_file,
str(kmer_length)],

memory=memory, override_parameters=spark_conf)

5. If requested, we use Conductor to copy the *k*-mer counts back to S3:

# do we need to upload the file back? if so, run upload
if run_upload:

_log.info("Uploading output file %s to %s.", hdfs_output_file, output_file)
call_conductor(master_ip, hdfs_output_file, output_file,

memory=memory, override_parameters=spark_conf)

The call_adam and call_conductor functions are imported from the toil_lib.tools.spark_tools
module. These functions run ADAM and Conductor using Docker containers from cgl-docker-lib.1 These two func-
tions launch the Docker containers using the call_docker function from the toil_lib.programs module,
and do some basic configuration of the command line. In the ADAM example, all the user needs to pass is the exact
arguments that they would like run from the ADAM CLI, and the Spark configuration parameters that are passed to
the adam-submit script are automatically configured.

As you may have noticed, all of this functionality is contained in a single Toil job. This is important for fault tolerance.
Toil provides tolerance against data loss through the use of a file store, which manages the persistance of local files to
a persistant store (e.g., S3). Since we store intermediate files in HDFS, thus bypassing the file store, our intermediate
results are not persistant, and thus individual Spark applications are not atomic.

Using PySpark in Toil

As an aside, a nice benefit of Toil is that we can run PySpark jobs inline with Toil workflows. A small demo of this is
seen in the toil_lib.spark unit tests:

def _count_child(job, masterHostname):

# noinspection PyUnresolvedReferences

1 These containers are published on Quay.

1.1. The ADAM/Big Data Genomics Ecosystem 23

https://github.com/BD2KGenomics/toil-scripts/blob/master/src/toil_scripts/adam_kmers/count_kmers.py#L161-L168
https://github.com/BD2KGenomics/toil-scripts/blob/master/src/toil_scripts/adam_kmers/count_kmers.py#L170-L174
https://github.com/BD2KGenomics/cgl-docker-lib
https://toil.readthedocs.io/en/latest/developing.html#managing-files-within-a-workflow
https://github.com/BD2KGenomics/toil-lib/blob/master/src/toil_lib/test/test_spark.py#L58-L71
https://quay.io/repository/ucsc_cgl


bdgenomics.workflows Documentation, Release 0.23.0-SNAPSHOT

from pyspark import SparkContext

# start spark context and connect to cluster
sc = SparkContext(master='spark://%s:7077' % masterHostname,

appName='count_test')

# create an rdd containing 0-9999 split across 10 partitions
rdd = sc.parallelize(xrange(10000), 10)

# and now, count it
assert rdd.count() == 10000

1.1.13 Running ADAM on Slurm

For those groups with access to a HPC cluster with Slurm managing a number of compute nodes with local and/or
network attached storage, it is possible to spin up a temporary Spark cluster for use by ADAM.

The full IO bandwidth benefits of Spark processing are likely best realized through a set of co-located compute/storage
nodes. However, depending on your network setup, you may find Spark deployed on HPC to be a workable solution
for testing or even production at scale, especially for those applications which perform multiple in-memory transfor-
mations and thus benefit from Spark’s in-memory processing model.

Follow the primary instructions for installing ADAM into $ADAM_HOME. This will most likely be at a location on a
shared disk accessible to all nodes, but could be at a consistant location on each machine.

Start Spark cluster

A Spark cluster can be started as a multi-node job in Slurm by creating a job file run.cmd such as below:

#!/bin/bash

#SBATCH --partition=multinode
#SBATCH --job-name=spark-multi-node
#SBATCH --exclusive

#Number of seperate nodes reserved for Spark cluster
#SBATCH --nodes=2
#SBATCH --cpus-per-task=12

#Number of excecution slots
#SBATCH --ntasks=2

#SBATCH --time=05:00:00
#SBATCH --mem=248g

# If your sys admin has installed spark as a module
module load spark

# If Spark is not installed as a module, you will need to specifiy absolute path to
# $SPARK_HOME/bin/spark-start where $SPARK_HOME is on shared disk or at a consistant
→˓location
start-spark

echo $MASTER
sleep infinity
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Submit the job file to Slurm:

sbatch run.cmd

This will start a Spark cluster containing two nodes that persists for five hours, unless you kill it sooner. The file
slurm.out created in the current directory will contain a line produced by echo $MASTER above which will
indicate the address of the Spark master to which your application or ADAM-shell should connect such as spark:/
/somehostname:7077

Start adam-shell

Your sys admin will probably prefer that you launch your adam-shell or start an application from a cluster node
rather than the head node you log in to. You may want to do so with:

sinteractive

Start an adam-shell:

$ADAM_HOME/bin/adam-shell --master spark://hostnamefromslurmdotout:7077

or Run a batch job with adam-submit

$ADAM_HOME/bin/adam-submit --master spark://hostnamefromslurmdotout:7077

You should be able to connect to the Spark Web UI at http://hostnamefromslurmdotout:4040, however
you may need to ask your system administrator to open the required ports.

1.1.14 Running ADAM’s command line tools

In addition to being used as an API for building applications, ADAM provides a command line interface (CLI) for
extracting, transforming, and loading (ETL-ing) genomics data. Our CLI is roughly divided into three sections:

• Actions that manipulate data using the ADAM schemas

• Conversions that convert data from legacy formats into Parquet

• Printers that provide detailed or summarized views of genomic data

ADAM’s various CLI actions can be run from the command line using the scripts/adam-submit script. This
script uses the spark-submit script to run an ADAM application on a Spark cluster. To use this script, either
spark-submit must be on the $PATH, or the $SPARK_HOME environment variable must be set.

Default arguments

There are several command line options that are present across most commands. These include:

• -h, -help, --help, -?: prints the usage for this command

• -parquet_block_size N: sets the block size for Parquet in bytes, if writing a Parquet output file. Defaults
to 128 MB (128 * 1024 * 1024).

• -parquet_compression_codec: The codec to use for compressing a Parquet page. Choices are:

– UNCOMPRESSED: No compression.

– SNAPPY: Use the Snappy compression codec.

1.1. The ADAM/Big Data Genomics Ecosystem 25

https://github.com/google/snappy


bdgenomics.workflows Documentation, Release 0.23.0-SNAPSHOT

– GZIP: Use a Gzip based compression codec.

– LZO: Use a LZO based compression codec. To use LZO, the LZO libraries must be installed.

• -parquet_disable_dictionary: Disables dictionary encoding in Parquet, and enables delta encoding.

• -parquet_logging_level VAL: The Log4j logging level to set for Parquet’s loggers. Defaults to
severe.

• -parquet_page_size N: The page size in bytes to use when writing Parquet files. Defaults to 1MB (1024
* 1024).

• -print_metrics: If provided, prints the instrumentation metrics to the log when the CLI operation termi-
nates.

Legacy output options

Several tools in ADAM support saving back to legacy genomics output formats. Any tool saving to one of these
formats supports the following options:

• -single: Merge sharded output files. If this is not provided, the output will be written as sharded
files where each shard is a valid file. If this is provided, the shards will be written without headers as a
${OUTPUTNAME}_tail directory, and a single header will be written to ${OUTPUTNAME}_head. If
-single is provided and -defer_merging is not provided, the header file and the shard directory will
be merged into a single file at ${OUTPUTPATH}.

• -defer_merging: If both -defer_merging and -single are provided, the output will be saved as if is
a single file, but the output files will not be merged.

• -disable_fast_concat: If -single is provided and -defer_merging is not, this disables the use
of the parallel concatenation engine. This engine is used when running on top of HDFS, and resizes the output
files to match the HDFS block size before calling the Hadoop FileSystem concat method which concatenates
the files by modifying the filesystem metadata and not the bytes on disk. This method is vastly more performant
for large files, but has many invariants that may prevent it from being run (e.g., it cannot be run on an encrypted
HDFS directory).

Validation stringency

Various components in ADAM support passing a validation stringency level. This is a three level scale:

• STRICT: If validation fails, throw an exception.

• LENIENT: If validation fails, ignore the data and write a warning to the log.

• SILENT: If validation fails, ignore the data silently.

1.1.15 Action tools

Roughly speaking, “action” tools apply some form of non-trivial transformation to data using the ADAM APIs.

countKmers and countContigKmers

Counts the k length substrings in either a set of reads or reference fragments. Takes three required arguments:

1. INPUT: The input path. A set of reads for countKmers or a set of reference contigs for
countContigKmers.
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2. OUTPUT: The path to save the output to. Saves the output as CSV containing the k-mer sequence and count.

3. KMER_LENGTH: The length k of substrings to count.

Beyond the default options, both countKmers and countContigKmers take one option:

• -print_histogram: If provided, prints a histogram of the k-mer count distribution to standard out.

transformAlignments

The transformAlignments CLI is the entrypoint to ADAM’s read preprocessing tools. This command pro-
vides drop-in replacement commands for several commands in the Genome Analysis Toolkit “Best Practices” read
preprocessing pipeline and more (DePristo et al. 2011). This CLI tool takes two required arguments:

1. INPUT: The input path. A file containing reads in any of the supported ADAM read input formats.

2. OUTPUT: The path to save the transformed reads to. Supports any of ADAM’s read output formats.

Beyond the default options and the legacy output options, transformAlignments supports a vast range of options.
These options fall into several general categories:

• General options:

– -cache: If provided, the results of intermediate stages will be cached. This is necessary to avoid recom-
putation if running multiple transformations (e.g., Indel realignment, BQSR, etc) back to back.

– -storage_level: Along with -cache, this can be used to set the Spark persistance level for cached
data. If not provided, this defaults to MEM_ONLY.

– -stringency: Sets the validation stringency for various operations. Defaults to LENIENT. See vali-
dation stringency for more details.

• Loading options:

– -repartition: Forces a repartition on load. Useful to increase the available parallelism on a small
dataset. Forces a shuffle. Takes the number of partitions to repartition to.

– -force_load_bam: Forces ADAM to try to load the input as SAM/BAM/CRAM.

– -force_load_fastq: Forces ADAM to try to load the input as FASTQ.

– -paired_fastq: Forces -force_load_fastq, and passes the path of a second-of-pair FASTQ file
to load.

– -record_group: If loading FASTQ, sets the record group name on each read to this value.

– -force_load_ifastq: Forces ADAM to try to load the input as interleaved FASTQ.

– -force_load_parquet: Forces ADAM to try to load the input as Parquet encoded using the ADAM
AlignmentRecord schema.

– -limit_projection: If loading as Parquet, sets a projection that does not load the attributes or
origQual fields of the AlignmentRecord.

– -aligned_read_predicate: If loading as Parquet, only loads aligned reads.

– -region_predicate: A string indicating that reads should be filtered on overlapping a genomic po-
sition or range. This argument takes a comma separated list, where each element in the list takes the
form:

– contig:pos for a single genomic position, or

– contig:start-end for a genomic range with closed start and open end E.g., -region_predicate
1:100,2:1000-2000 would filter all reads that overlapped either position 100 on 1 or the range from
1,000 to 2,000 on 2.
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– -concat: Provides a path to an optional second file to load, which is then concatenated to the file given
as the INPUT path.

• Duplicate marking options: Duplicate marking is run with the -mark_duplicate_reads option. It takes
no optional parameters.

• BQSR options: BQSR is run with the -recalibrate_base_qualities flag. Additionally, the BQSR
engine takes the following parameters:

– -known_snps: Path to a VCF file/Parquet variant file containing known point variants. These point
variants are used to mask read errors during recalibration. Specifically, putative read errors that are at
variant sites are treated as correct observations. If BQSR is run, this option should be passed, along with a
path to a known variation database (e.g., dbSNP).

• Indel realignment options: Indel realignment is run with the -realign_indels flag. Additionally, the Indel
realignment engine takes the following options:

– -known_indels: Path to a VCF file/Parquet variant file containing known Indel variants to re-
align against. If provided, forces the KNOWNS_ONLY consensus model. If not provided, forces the
CONSENSUS_FROM_READS model. See candidate generation and realignment.

– -max_consensus_number: The maximum number of consensus sequences to realign a single target
against. If more consensus sequences are seen at a single target, we randomly downsample. Defaults to
30.

– -max_indel_size: The maximum length of an Indel to realign against. Indels longer than this size
are dropped before generating consensus sequences. Defaults to 500bp.

– -max_target_size: The maximum length of a target to realign. Targets longer than this size are
dropped before trying to realign. Defaults to 3,000bp.

– -max_reads_per_target: The maximum number of reads in a target that we will try to realign. By
default, this value is 20,000 reads. If we encounter a target with more than this number of reads, we skip
realigning this target.

– -reference: An optional path to a reference genome assembly build. If this is not provided, then we
attempt to reconstruct the reference at each target from the MD tags on each read.

– -unclip_reads: If provided, we will unclip reads when attempting to realign them to the reference. If
not provided, we leave clipped reads clipped.

– -log_odds_threshold: The log odds threshold to use for picking a consensus sequence to finalize
realignments against. A consensus will not be realigned against unless the Phred weighted edit distance
against the given consensus/reference pair is a sufficient improvement over the original reference realign-
ments. This option sets that improvement weight. Defaults to 5.0.

• Base quality binning: If the -bin_quality_scores option is passed, the quality scores attached to the
reads will be rewritten into bins. This option takes a semicolon (;) delimited list, where each element describes
a bin. The description for a bin is three integers: the bottom of the bin, the top of the bin, and the value to assign
to bases in the bin. E.g., given the description 0,20,10:20,50,30, all quality scores between 0–19 will be
rewritten to 10, and all quality scores between 20–49 will be rewritten to 30.

• mismatchingPositions tagging options: We can recompute the mismatchingPositions field of
an AlignmentRecord (SAM “MD” tag) with the -add_md_tags flag. This flag takes a path to a reference
file in either FASTA or Parquet NucleotideContigFragment format. Additionally, this engine takes the
following options:

– -md_tag_fragment_size: If loading from FASTA, sets the size of each fragment to load. Defaults
to 10,000bp.

– -md_tag_overwrite: If provided, recomputes and overwrites the mismatchingPositions field
for records where this field was provided.
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• Output options: transformAlignments supports the legacy output options. Additionally, there are the
following options:

– -coalesce: Sets the number of partitions to coalesce the output to. If -force_shuffle_coalesce
is not provided, the Spark engine may ignore the coalesce directive.

– -force_shuffle_coalesce: Forces a shuffle that leads to the output being saved with the number
of partitions requested by -coalesce. This is necessary if the -coalesce would increase the number
of partitions, or if it would reduce the number of partitions to fewer than the number of Spark executors.
This may have a substantial performance cost, and will invalidate any sort order.

– -sort_reads: Sorts reads by alignment position. Unmapped reads are placed at the end of all reads.
Contigs are ordered by sequence record index.

– -sort_lexicographically: Sorts reads by alignment position. Unmapped reads are placed at the
end of all reads. Contigs are ordered lexicographically.

– -sort_fastq_output: Ignored if not saving to FASTQ. If saving to FASTQ, sorts the output reads
by read name.

transformFeatures

Loads a feature file into the ADAM Feature schema, and saves it back. The input and output formats are autode-
tected. Takes two required arguments:

1. INPUT: The input path. A file containing features in any of the supported ADAM feature input formats.

2. OUTPUT: The path to save the transformed features to. Supports any of ADAM’s feature output formats.

Beyond the default options and the legacy output options, transformFeatures has one optional argument:

• -num_partitions: If loading from a textual feature format (i.e., not Parquet), sets the number of partitions
to load. If not provided, this is chosen by Spark.

transformGenotypes

Loads a genotype file into the ADAM Genotype schema, and saves it back. The input and output formats are
autodetected. Takes two required arguments:

1. INPUT: The input path. A file containing genotypes in any of the supported ADAM genotype input formats.

2. OUTPUT: The path to save the transformed genotypes to. Supports any of ADAM’s genotype output formats.

Beyond the default options and the legacy output options, transformGenotypes has additional arguments:

• -coalesce: Sets the number of partitions to coalesce the output to. If -force_shuffle_coalesce is
not provided, the Spark engine may ignore the coalesce directive.

• -force_shuffle_coalesce: Forces a shuffle that leads to the output being saved with the number of
partitions requested by -coalesce. This is necessary if the -coalesce would increase the number of
partitions, or if it would reduce the number of partitions to fewer than the number of Spark executors. This may
have a substantial performance cost, and will invalidate any sort order.

• -sort_on_save: Sorts the genotypes when saving, where contigs are ordered by sequence index. Conflicts
with -sort_lexicographically_on_save.

• -sort_lexicographically_on_save: Sorts the genotypes when saving, where contigs are ordered
lexicographically. Conflicts with -sort_on_save.

• -single: Saves the VCF file as headerless shards, and then merges the sharded files into a single VCF.
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• -stringency: Sets the validation stringency for conversion. Defaults to LENIENT. See validation strin-
gency for more details.

In this command, the validation stringency is applied to the individual genotypes. If a genotype fails validation, the
individual genotype will be dropped (for lenient or silent validation, under strict validation, conversion will fail).
Header lines are not validated. Due to a constraint imposed by the htsjdk library, which we use to parse VCF files,
user provided header lines that do not match the header line definitions from the VCF 4.2 spec will be overridden with
the line definitions from the specification. Unfortunately, this behavior cannot be disabled. If there is a user provided
vs. spec mismatch in format/info field count or type, this will likely cause validation failures during conversion.

transformVariants

Loads a variant file into the ADAM Variant schema, and saves it back. The input and output formats are autode-
tected. Takes two required arguments:

1. INPUT: The input path. A file containing variants in any of the supported ADAM variant input formats.

2. OUTPUT: The path to save the transformed variants to. Supports any of ADAM’s variant output formats.

Beyond the default options and the legacy output options, transformVariants has additional arguments:

• -coalesce: Sets the number of partitions to coalesce the output to. If -force_shuffle_coalesce is
not provided, the Spark engine may ignore the coalesce directive.

• -force_shuffle_coalesce: Forces a shuffle that leads to the output being saved with the number of
partitions requested by -coalesce. This is necessary if the -coalesce would increase the number of
partitions, or if it would reduce the number of partitions to fewer than the number of Spark executors. This may
have a substantial performance cost, and will invalidate any sort order.

• -sort_on_save: Sorts the variants when saving, where contigs are ordered by sequence index. Conflicts
with -sort_lexicographically_on_save.

• -sort_lexicographically_on_save: Sorts the variants when saving, where contigs are ordered lexi-
cographically. Conflicts with -sort_on_save.

• -single: Saves the VCF file as headerless shards, and then merges the sharded files into a single VCF.

• -stringency: Sets the validation stringency for conversion. Defaults to LENIENT. See validation strin-
gency for more details.

In this command, the validation stringency is applied to the individual variants. If a variant fails validation, the
individual variant will be dropped (for lenient or silent validation, under strict validation, conversion will fail). Header
lines are not validated. Due to a constraint imposed by the htsjdk library, which we use to parse VCF files, user
provided header lines that do not match the header line definitions from the VCF 4.2 spec will be overridden with
the line definitions from the specification. Unfortunately, this behavior cannot be disabled. If there is a user provided
vs. spec mismatch in format/info field count or type, this will likely cause validation failures during conversion.

mergeShards

A CLI tool for merging a sharded legacy file that was written with the -single and -defer_merging flags. Runs
the file merging process. Takes two required arguments:

1. INPUT: The input directory of sharded files to merge.

2. OUTPUT: The path to save the merged file at.

This command takes several optional arguments:

• -buffer_size: The buffer size in bytes to use for copying data on the driver. Defaults to 4MB (4 * 1024 *
1024).
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• -header_path: The path to a header file that should be written to the start of the merged output.

• -write_cram_eof: Writes an empty CRAM container at the end of the merged output file. This should not
be provided unless merging a sharded CRAM file.

• -write_empty_GZIP_at_eof: Writes an empty GZIP block at the end of the merged output file. This
should be provided if merging a sharded BAM file or any other BGZIPed format.

This command does not support Parquet output, so the only default options that this command supports is
-print_metrics.

reads2coverage

The reads2coverage command computes per-locus coverage from reads and saves the coverage counts as features.
Takes two required arguments:

1. INPUT: The input path. A file containing reads in any of the supported ADAM read input formats.

2. OUTPUT: The path to save the coverage counts to. Saves in any of the ADAM supported feature file formats.

In addition to the default options, reads2coverage takes the following options:

• -collapse: If two (or more) neighboring sites have the same coverage, we collapse them down into a single
genomic feature.

• -only_negative_strands: Only computes coverage for reads aligned on the negative strand. Conflicts
with -only_positive_strands.

• -only_positive_strands: Only computes coverage for reads aligned on the positive strand. Conflicts
with -only_negative_strands.

• -sort_lexicographically: Sorts coverage by position. Contigs are ordered lexicographically. Only
applies if running with -collapse.

1.1.16 Conversion tools

These tools convert data between a legacy genomic file format and using ADAM’s schemas to store data in Parquet.

fasta2adam and adam2fasta

These commands convert between FASTA and Parquet files storing assemblies using the NucleotideContigFragment
schema.

fasta2adam takes two required arguments:

1. FASTA: The input FASTA file to convert.

2. ADAM: The path to save the Parquet formatted NucleotideContigFragments to.

fasta2adam supports the full set of default options, as well as the following options:

• -fragment_length: The fragment length to shard a given contig into. Defaults to 10,000bp.

• -reads: Path to a set of reads that includes sequence info. This read path is used to obtain the sequence indices
for ordering the contigs from the FASTA file.

• -repartition: The number of partitions to save the data to. If provided, forces a shuffle.

• -verbose: If given, enables additional logging where the sequence dictionary is printed.

adam2fasta takes two required arguments:
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1. ADAM: The path to a Parquet file containing NucleotideContigFragments.

2. FASTA: The path to save the FASTA file to.

adam2fasta only supports the -print_metrics option from the default options. Additionally, adam2fasta
takes the following options:

• -line_width: The line width in characters to use for breaking FASTA lines. Defaults to 60 characters.

• -coalesce: Sets the number of partitions to coalesce the output to. If -force_shuffle_coalesce is
not provided, the Spark engine may ignore the coalesce directive.

• -force_shuffle_coalesce: Forces a shuffle that leads to the output being saved with the number of
partitions requested by -coalesce. This is necessary if the -coalesce would increase the number of
partitions, or if it would reduce the number of partitions to fewer than the number of Spark executors. This may
have a substantial performance cost, and will invalidate any sort order.

adam2fastq

While the `transformAlignments <#transformAlignments>‘__ command can export to FASTQ, the
adam2fastq provides a simpler CLI with more output options. adam2fastq takes two required arguments and an
optional third argument:

1. INPUT: The input read file, in any ADAM-supported read format.

2. OUTPUT: The path to save an unpaired or interleaved FASTQ file to, or the path to save the first-of-pair reads
to, for paired FASTQ.

3. Optional SECOND_OUTPUT: If saving paired FASTQ, the path to save the second-of-pair reads to.

adam2fastq only supports the -print_metrics option from the default options. Additionally, adam2fastq
takes the following options:

• -no_projection: By default, adam2fastq only projects the fields necessary for saving to FASTQ. This
option disables that projection and projects all fields.

• -output_oq: Outputs the original read qualities, if available.

• -persist_level: Sets the Spark persistence level for cached data during the conversion back to FASTQ. If
not provided, the intermediate RDDs are not cached.

• -repartition: The number of partitions to save the data to. If provided, forces a shuffle.

• -validation: Sets the validation stringency for checking whether reads are paired when saving paired reads.
Defaults to LENIENT. See validation stringency for more details.

transformFragments

These two commands translate read data between the single read alignment and fragment representations.

transformFragments takes two required arguments:

1. INPUT: The input fragment file, in any ADAM-supported read or fragment format.

2. OUTPUT: The path to save reads at, in any ADAM-supported read or fragment format.

transformFragments takes the default options. Additionally, transformFragments takes the following
options:

• -mark_duplicate_reads: Marks reads as fragment duplicates. Running mark duplicates on fragments
improves performance by eliminating one groupBy (and therefore, a shuffle) versus running on reads.
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• Base quality binning: If the -bin_quality_scores option is passed, the quality scores attached to the
reads will be rewritten into bins. This option takes a semicolon (;) delimited list, where each element describes
a bin. The description for a bin is three integers: the bottom of the bin, the top of the bin, and the value to assign
to bases in the bin. E.g., given the description 0,20,10:20,50,30, all quality scores between 0–19 will be
rewritten to 10, and all quality scores between 20–49 will be rewritten to 30.

• -load_as_reads: Treats the input as a read file (uses loadAlignments instead of loadFragments),
which behaves differently for unpaired FASTQ.

• -save_as_reads: Saves the output as a Parquet file of AlignmentRecords, as SAM/BAM/CRAM, or
as FASTQ, depending on the output file extension. If this option is specified, the output can also be sorted:

• -sort_reads: Sorts reads by alignment position. Unmapped reads are placed at the end of all reads. Contigs
are ordered by sequence record index.

• -sort_lexicographically: Sorts reads by alignment position. Unmapped reads are placed at the end of
all reads. Contigs are ordered lexicographically.

1.1.17 Printing tools

The printing tools provide some form of user readable view of an ADAM file. These commands are useful for both
quality control and debugging.

print

Dumps a Parquet file to either the console or a text file as JSON. Takes one required argument:

1. FILE(S): The file paths to load. These must be Parquet formatted files.

This command has several options:

• -pretty: Pretty prints the JSON output.

• -o: Provides a path to save the output dump to, instead of writing the output to the console.

This command does not support Parquet output, so the only default options that this command supports is
-print_metrics.

flagstat

Runs the ADAM equivalent to the SAMTools flagstat command. Takes one required argument:

1. INPUT: The input path. A file containing reads in any of the supported ADAM read input formats.

This command has several options:

• -stringency: Sets the validation stringency for various operations. Defaults to SILENT. See validation
stringency for more details.

• -o: Provides a path to save the output dump to, instead of writing the output to the console.

This command does not support Parquet output, so the only default options that this command supports is
-print_metrics.
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view

Runs the ADAM equivalent to the SAMTools view command. Takes one required argument:

1. INPUT: The input path. A file containing reads in any of the supported ADAM read input formats.

In addition to the default options, this command supports the following options:

• -o: Provides a path to save the output dump to, instead of writing the output to the console. Format is autode-
tected as any of the ADAM read outputs.

• -F/-f: Filters reads that either match all (-f) or none (-F) of the flag bits.

• -G/-g: Filters reads that either mismatch all (-g) or none (-G) of the flag bits.

• -c: Prints the number of reads that (mis)matched the filters, instead of the reads themselves. Conflicts with -o.

1.1.18 API Overview

The main entrypoint to ADAM is the ADAMContext, which allows genomic data to be loaded in to Spark as Genomi-
cRDD. GenomicRDDs can be transformed using ADAM’s built in pre-processing algorithms, Spark’s RDD primitives,
the region join primitive, and ADAM’s pipe APIs. GenomicRDDs can also be interacted with as Spark SQL tables.

In addition to the Scala/Java API, ADAM can be used from Python and R.

Adding dependencies on ADAM libraries

ADAM libraries are available from Maven Central under the groupId org.bdgenomics.adam, such as the
adam-core library:

<dependency>
<groupId>org.bdgenomics.adam</groupId>
<artifactId>adam-core${binary.version}</artifactId>
<version>${adam.version}</version>

</dependency>

Scala apps should depend on adam-core, while Java applications should also depend on adam-apis:

<dependency>
<groupId>org.bdgenomics.adam</groupId>
<artifactId>adam-apis${binary.version}</artifactId>
<version>${adam.version}</version>

</dependency>

For each release, we support four ${binary.version}s:

• _2.10: Spark 1.6.x on Scala 2.10

• _2.11: Spark 1.6.x on Scala 2.11

• -spark2_2.10: Spark 2.x on Scala 2.10

• -spark2_2.11: Spark 2.x on Scala 2.11

Additionally, we push nightly SNAPSHOT releases of ADAM to the Sonatype snapshot repo, for developers who are
interested in working on top of the latest changes in ADAM.
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The ADAM Python API

ADAM’s Python API wraps the ADAMContext and GenomicRDD APIs so they can be used from PySpark. The
Python API is feature complete relative to ADAM’s Java API, with the exception of the region join API, which is not
supported.

The ADAM R API

ADAM’s R API wraps the ADAMContext and GenomicRDD APIs so they can be used from SparkR. The R API is
feature complete relative to ADAM’s Java API, with the exception of the region join API, which is not supported.

1.1.19 Loading data with the ADAMContext

The ADAMContext is the main entrypoint to using ADAM. The ADAMContext wraps an existing SparkContext to
provide methods for loading genomic data. In Scala, we provide an implicit conversion from a SparkContext to
an ADAMContext. To use this, import the implicit, and call an ADAMContext method:

import org.apache.spark.SparkContext

// the ._ at the end imports the implicit from the ADAMContext companion object
import org.bdgenomics.adam.rdd.ADAMContext._
import org.bdgenomics.adam.rdd.read.AlignmentRecordRDD

def loadReads(filePath: String, sc: SparkContext): AlignmentRecordRDD = {
sc.loadAlignments(filePath)

}

In Java, instantiate a JavaADAMContext, which wraps an ADAMContext:

import org.apache.spark.apis.java.JavaSparkContext;
import org.bdgenomics.adam.apis.java.JavaADAMContext;
import org.bdgenomics.adam.rdd.ADAMContext;
import org.bdgenomics.adam.rdd.read.AlignmentRecordRDD;

class LoadReads {

public static AlignmentRecordRDD loadReads(String filePath,
JavaSparkContext jsc) {

// create an ADAMContext first
ADAMContext ac = new ADAMContext(jsc.sc());

// then wrap that in a JavaADAMContext
JavaADAMContext jac = new JavaADAMContext(ac);

return jac.loadAlignments(filePath);
}

}

From Python, instantiate an ADAMContext, which wraps a SparkContext:

from bdgenomics.adam.adamContext import ADAMContext

ac = ADAMContext(sc)

reads = ac.loadAlignments("my/read/file.adam")
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With an ADAMContext, you can load:

• Single reads as an AlignmentRecordRDD: - From SAM/BAM/CRAM using loadBam (Scala only) - Se-
lected regions from an indexed BAM/CRAM using loadIndexedBam

(Scala only)

– From FASTQ using loadFastq, loadPairedFastq, and loadUnpairedFastq (Scala only)

– From Parquet using loadParquetAlignments (Scala only)

– The loadAlignments method will load from any of the above formats, and will autodetect the under-
lying format (Scala, Java, Python, and R, also supports loading reads from FASTA)

• Paired reads as a FragmentRDD: - From interleaved FASTQ using
loadInterleavedFastqAsFragments

(Scala only)

– From Parquet using loadParquetFragments (Scala only)

– The loadFragments method will load from either of the above formats, as well as SAM/BAM/CRAM,
and will autodetect the underlying file format. If the file is a SAM/BAM/CRAM file and the file is query-
name sorted, the data will be converted to fragments without performing a shuffle. (Scala, Java, Python,
and R)

• VCF lines as a VariantContextRDD from VCF/BCF1 using loadVcf (Scala only)

• Selected lines from a tabix indexed VCF using loadIndexedVcf (Scala only)

• Genotypes as a GenotypeRDD: - From Parquet using loadParquetGenotypes (Scala only) - From either
Parquet or VCF/BCF1 using loadGenotypes (Scala, Java,

Python, and R)

• Variants as a VariantRDD: - From Parquet using loadParquetVariants (Scala only) - From either
Parquet or VCF/BCF1 using loadVariants (Scala, Java,

Python, and R)

• Genomic features as a FeatureRDD: - From BED using loadBed (Scala only) - From GFF3 us-
ing loadGff3 (Scala only) - From GFF2/GTF using loadGtf (Scala only) - From NarrowPeak using
loadNarrowPeak (Scala only) - From IntervalList using loadIntervalList (Scala only) - From Parquet
using loadParquetFeatures (Scala only) - Autodetected from any of the above using loadFeatures
(Scala,

Java, Python, and R)

• Fragmented contig sequence as a NucleotideContigFragmentRDD: - From FASTA with loadFasta
(Scala only) - From Parquet with loadParquetContigFragments (Scala only) - Autodetected from either
of the above using loadSequences (Scala,

Java, Python, and R)

• Coverage data as a CoverageRDD: - From Parquet using loadParquetCoverage (Scala only) - From
Parquet or any of the feature file formats using

loadCoverage (Scala only)

– Contig sequence as a broadcastable ReferenceFile using loadReferenceFile, which supports
2bit files, FASTA, and Parquet (Scala only)

The methods labeled “Scala only” may be usable from Java, but may not be convenient to use.

36 Chapter 1. Introduction



bdgenomics.workflows Documentation, Release 0.23.0-SNAPSHOT

The JavaADAMContext class provides Java-friendly methods that are equivalent to the ADAMContext methods.
Specifically, these methods use Java types, and do not make use of default parameters. In addition to the load/save
methods described above, the ADAMContext adds the implicit methods needed for using ADAM’s pipe_ API.

1.1.20 Working with genomic data using GenomicRDDs

As described in the section on using the ADAMContext, ADAM loads genomic data into a GenomicRDD which
is specialized for each datatype. This GenomicRDD wraps Apache Spark’s Resilient Distributed Dataset (RDD,
(Zaharia et al. 2012)) API with genomic metadata. The RDD abstraction presents an array of data which is distributed
across a cluster. RDDs are backed by a computational lineage, which allows them to be recomputed if a node fails
and the results of a computation are lost. RDDs are processed by running functional [transformations]{#transforming}
across the whole dataset.

Around an RDD, ADAM adds metadata which describes the genome, samples, or read group that a dataset came from.
Specifically, ADAM supports the following metadata:

• GenomicRDD base: A sequence dictionary, which describes the reference assembly that data are aligned to, if
it is aligned. Applies to all types.

• MultisampleGenomicRDD: Adds metadata about the samples in a dataset. Applies to GenotypeRDD.

• ReadGroupGenomicRDD: Adds metadata about the read groups attached to a dataset. Applies to
AlignmentRecordRDD and FragmentRDD.

Additionally, GenotypeRDD, VariantRDD, and VariantContextRDD store the VCF header lines attached to
the original file, to enable a round trip between Parquet and VCF.

GenomicRDDs can be transformed several ways. These include:

• The core preprocessing algorithms in ADAM:

• Reads:

– Reads to coverage

– Recalibrate base qualities

– INDEL realignment

– Mark duplicate reads

• Fragments:

– Mark duplicate fragments

• RDD transformations

• Spark SQL transformations

• By using ADAM to pipe out to another tool

Transforming GenomicRDDs

Although GenomicRDDs do not extend Apache Spark’s RDD class, RDD operations can be performed on them using
the transform method. Currently, we only support RDD to RDD transformations that keep the same type as the
base type of the GenomicRDD. To apply an RDD transform, use the transform method, which takes a function
mapping one RDD of the base type into another RDD of the base type. For example, we could use transform on
an AlignmentRecordRDD to filter out reads that have a low mapping quality, but we cannot use transform to
translate those reads into Features showing the genomic locations covered by reads.
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If we want to transform a GenomicRDD into a new GenomicRDD that contains a different datatype (e.g., reads
to features), we can instead use the transmute function. The transmute function takes a function that trans-
forms an RDD of the type of the first GenomicRDD into a new RDD that contains records of the type of the second
GenomicRDD. Additionally, it takes an implicit function that maps the metadata in the first GenomicRDD into the
metadata needed by the second GenomicRDD. This is akin to the implicit function required by the pipe API. As an
example, let us use the transmute function to make features corresponding to reads containing INDELs:

// pick up implicits from ADAMContext
import org.bdgenomics.adam.rdd.ADAMContext._

val reads = sc.loadAlignments("path/to/my/reads.adam")

// the type of the transmuted RDD normally needs to be specified
// import the FeatureRDD, which is the output type
import org.bdgenomics.adam.rdd.feature.FeatureRDD
import org.bdgenomics.formats.avro.Feature

val features: FeatureRDD = reads.transmute(rdd => {
rdd.filter(r => {
// does the CIGAR for this read contain an I or a D?
Option(r.getCigar)

.exists(c => c.contains("I") || c.contains("D"))
}).map(r => {
Feature.newBuilder

.setContigName(r.getContigName)

.setStart(r.getStart)

.setEnd(r.getEnd)

.build
})

})

ADAMContext provides the implicit functions needed to run the transmute function between all GenomicRDDs
contained within the org.bdgenomics.adam.rdd package hierarchy. Any custom GenomicRDD can be sup-
ported by providing a user defined conversion function.

Transforming GenomicRDDs via Spark SQL

Spark SQL introduced the strongly-typed `Dataset API in Spark 1.6.0 <https://spark.apache.org/docs/1.6.0/
sql-programming-guide.html#datasets>‘__. This API supports seamless translation between the RDD API and a
strongly typed DataFrame style API. While Spark SQL supports many types of encoders for translating data from
an RDD into a Dataset, no encoders support the Avro models used by ADAM to describe our genomic schemas. In
spite of this, Spark SQL is highly desirable because it has a more efficient execution engine than the Spark RDD APIs,
which can lead to substantial speedups for certain queries.

To resolve this, we added an adam-codegen package that generates Spark SQL compatible classes representing
the ADAM schemas. These classes are available in the org.bdgenomics.adam.sql package. All Avro-backed
GenomicRDDs now support translation to Datasets via the dataset field, and transformation via the Spark SQL
APIs through the transformDataset method. As an optimization, we lazily choose either the RDD or Dataset
API depending on the calculation being performed. For example, if one were to load a Parquet file of reads, we would
not decide to load the Parquet file as an RDD or a Dataset until we saw your query. If you were to load the reads from
Parquet and then were to immediately run a transformDataset call, it would be more efficient to load the data
directly using the Spark SQL APIs, instead of loading the data as an RDD, and then transforming that RDD into a
SQL Dataset.

The functionality of the adam-codegen package is simple. The goal of this package is to take ADAM’s Avro
schemas and to remap them into classes that implement Scala’s Product interface, and which have a specific style
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of constructor that is expected by Spark SQL. Additionally, we define functions that translate between these Product
classes and the bdg-formats Avro models. Parquet files written with either the Product classes and Spark SQL Parquet
writer or the Avro classes and the RDD/ParquetAvroOutputFormat are equivalent and can be read through either API.
However, to support this, we must explicitly set the requested schema on read when loading data through the RDD
read path. This is because Spark SQL writes a Parquet schema that is equivalent but not strictly identical to the Parquet
schema that the Avro/RDD write path writes. If the schema is not set, then schema validation on read fails. If reading
data using the ADAMContext APIs, this is handled properly; this is an implementation note necessary only for those
bypassing the ADAM APIs.

Similar to transform/transformDataset, there exists a transmuteDataset function that enables trans-
formations between GenomicRDDs of different types.

1.1.21 Using ADAM’s RegionJoin API

Another useful API implemented in ADAM is the RegionJoin API, which joins two genomic datasets that contain
overlapping regions. This primitive is useful for a number of applications including variant calling (identifying all
of the reads that overlap a candidate variant), coverage analysis (determining the coverage depth for each region in a
reference), and INDEL realignment (identify INDELs aligned against a reference).

There are two overlap join implementations available in ADAM: BroadcastRegionJoin and ShuffleRegionJoin. The
result of a ShuffleRegionJoin is identical to the BroadcastRegionJoin, however they serve different purposes depending
on the content of the two datasets.

The ShuffleRegionJoin is a distributed sort-merge overlap join. To ensure that the data are appropriately colocated, we
perform a copartition on the right dataset before the each node conducts the join locally. ShuffleRegionJoin should be
used if the right dataset is too large to send to all nodes and both datasets have high cardinality.

The BroadcastRegionJoin performs an overlap join by broadcasting a copy of the entire left dataset to each node. The
BroadcastRegionJoin should be used when the right side of your join is small enough to be collected and broadcast
out, and the larger side of the join is unsorted and the data are too large to be worth shuffling, the data are sufficiently
skewed that it is hard to load balance, or you can tolerate unsorted output.

Another important distinction between ShuffleRegionJoin and BroadcastRegionJoin is the join operations available in
ADAM. Since the broadcast join does not co-partition the datasets and instead sends the full right table to all nodes,
some joins (e.g. left/full outer joins) cannot be written as broadcast joins. See the table below for an exact list of what
joins are available for each type of region join.

To perform a ShuffleRegionJoin, use the following:

dataset1.shuffleRegionJoin(dataset2)

To perform a BroadcastRegionJoin, use the following:

dataset1.broadcastRegionJoin(dataset2)

Where dataset1 and dataset2 are GenomicRDDs. If you used the ADAMContext to read a genomic dataset
into memory, this condition is met.

ADAM has a variety of region join types that you can perform on your data, and all are called in a similar way:

• Joins implemented across both shuffle and broadcast

• Inner join

• Right outer join

• Shuffle-only joins

• Full outer join
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• Inner join and group by left

• Left outer join

• Right outer join and group by left

• Broadcast-only joins

• Inner join and group by right

• Right outer join and group by right

A subset of these joins are depicted in Figure 2 below.

Fig. 1.11: Joins Available

One common pattern involves joining a single dataset against many datasets. An example of this is joining
an RDD of features (e.g., gene/exon coordinates) against many different RDDs of reads. If the object that is
being used many times (gene/exon coordinates, in this case), we can force that object to be broadcast once
and reused many times with the broadcast() function. This pairs with the broadcastRegionJoin and
rightOuterBroadcastRegionJoin functions. For example, given the following code:

val reads = sc.loadAlignments("my/reads.adam")
val features = sc.loadFeatures("my/features.adam")

val readsByFeature = features.broadcastRegionJoin(reads)
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We can get a handle to the broadcast features by rewriting the code as:

val reads = sc.loadAlignments("my/reads.adam")
val bcastFeatures = sc.loadFeatures("my/features.adam").broadcast()

val readsByFeature = reads.broadcastRegionJoinAgainst(bcastFeatures)

To demonstrate how the RegionJoin APIs can be used to answer scientific questions, we will walk through three
common queries that can be written using the RegionJoin API. First, we will perform a simple filter on genotypes
based on a file of features. We will then demonstrate a join and group by on variants and features, providing variant
data grouped by the feature they overlap. Finally, we will separate reads into those that overlap and those that do not
overlap features from a feature file.

These demonstrations illustrate the difference between calling ShuffleRegionJoin and BroadcastRegionJoin and pro-
vide example code to expand from.

Filter Genotypes by Features

This query joins an RDD of Genotypes against an RDD of Features using an inner join. Because this is an inner join,
records from either dataset that do not pair to the other are automatically dropped, providing the filter we are interested
in. This query is useful for trying to identify genotypes that overlap features of interest. For example, if our feature
file contains all the exonic regions of the genome, this query would extract all genotypes that fall in exonic regions.

// Inner join will filter out genotypes not covered by a feature
val genotypes = sc.loadGenotypes("my/genotypes.adam")
val features = sc.loadFeatures("my/features.adam")

// We can use ShuffleRegionJoin...
val joinedGenotypesShuffle = genotypes.shuffleRegionJoin(features)

// ...or BroadcastRegionJoin
val joinedGenotypesBcast = features.broadcastRegionJoin(genotypes)

// In the case that we only want Genotypes, we can use a simple projection
val filteredGenotypesShuffle = joinedGenotypesShuffle.rdd.map(_._1)

val filteredGenotypesBcast = joinedGenotypesBcast.rdd.map(_._2)

After the join, we can perform a transform function on the resulting RDD to manipulate it into providing the answer
to our question. Since we were interested in the Genotypes that overlap a Feature, we map over the tuples and
select just the Genotype.

Since a broadcast join sends the left dataset to all executors, we chose to send the features dataset because feature
data are usually smaller in size than genotypic data.

Group overlapping variant data by the gene they overlap

This query joins an RDD of Variants against an RDD of Features, and immediately performs a group-by on the
Feature. This produces an RDD whose elements are a tuple containing a Feature, and all of the Variants overlapping
the Feature. This produces an RDD whose elements are tuples containing a Feature and all of the Variants overlapping
the Feature.This query is useful for trying to identify annotated variants that may interact (identifying frameshift
mutations within a transcript that may act as a pair to shift and then restore the reading frame) or as the start of a query
that computes variant density over a set of genomic features.
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// Inner join with a group by on the features
val features = sc.loadFeatures("my/features.adam")
val variants = sc.loadVariants("my/variants.adam")

// As a ShuffleRegionJoin, it can be implemented as follows:
val variantsByFeatureShuffle = features.shuffleRegionJoinAndGroupByLeft(variants)

// As a BroadcastRegionJoin, it can be implemented as follows:
val variantsByFeatureBcast = variants.broadcastRegionJoinAndGroupByRight(features)

When we switch join strategies, we swap which dataset is on the left side of the join. BroadcastRegionJoin only
supports grouping by the right dataset, and ShuffleRegionJoin supports only grouping by the left dataset.

The reason BroadcastRegionJoin does not have a joinAndGroupByLeft implementation is due to the fact that
the left dataset is broadcast to all nodes. Unlike shuffle joins, broadcast joins do not maintain a sort order invariant.
Because of this, we would need to shuffle all data to a group-by on the left side of the dataset, and there is no
opportunity to optimize by combining the join and group-by.

Separate reads into overlapping and non-overlapping features

This query joins an RDD of reads with an RDD of features using an outer join. The outer join will produce an RDD
where each read is optionally mapped to a feature. If a given read does not overlap with any features provided, it is
paired with a None. After we perform the join, we use a predicate to separate the reads into two RDDs. This query
is useful for filtering out reads based on feature data. For example, identifying reads that overlap with ATAC-seq data
to perform chromatin accessibility studies. It may be useful to separate the reads to perform distinct analyses on each
resulting dataset.

// An outer join provides us with both overlapping and non-overlapping data
val reads = sc.loadAlignments("my/reads.adam")
val features = sc.loadFeatures("my/features.adam")

// As a ShuffleRegionJoin, we can use a LeftOuterShuffleRegionJoin:
val readsToFeatures = reads.leftOuterShuffleRegionJoin(features)

// As a BroadcastRegionJoin, we can use a RightOuterBroadcastRegionJoin:
val featuresToReads = features.rightOuterBroadcastRegionJoin(reads)

// After we have our join, we need to separate the RDD
// If we used the ShuffleRegionJoin, we filter by None in the values
val overlapsFeatures = readsToFeatures.rdd.filter(_._2.isDefined)
val notOverlapsFeatures = readsToFeatures.rdd.filter(_._2.isEmpty)

// If we used BroadcastRegionJoin, we filter by None in the keys
val overlapsFeatures = featuresToReads.rdd.filter(_._1.isDefined)
val notOverlapsFeatures = featuresToReads.rdd.filter(_._1.isEmpty)

Because of the difference in how ShuffleRegionJoin and BroadcastRegionJoin are called, the predicate changes be-
tween them. It is not possible to call a leftOuterJoin using the BroadcastRegionJoin. As previously mentioned,
the BroadcastRegionJoin broadcasts the left dataset, so a left outer join would require an additional shuffle phase. For
an outer join, using a ShuffleRegionJoin will be cheaper if your reads are already sorted, however if the feature dataset
is small and the reads are not sorted, the BroadcastRegionJoin call would likely be more performant.
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1.1.22 Using ADAM’s Pipe API

ADAM’s GenomicRDD API provides support for piping the underlying genomic data out to a single node process
through the use of a pipe API. This builds off of Apache Spark’s RDD.pipe API. However, RDD.pipe prints the
objects as strings to the pipe. ADAM’s pipe API adds several important functions:

• It supports on-the-fly conversions to widely used genomic file formats

• It does not require input/output type matching (i.e., you can pipe reads in and get variants back from the pipe)

• It adds the ability to set environment variables and to make local files (e.g., a reference genome) available to the
run command

• If the data are aligned, we ensure that each subcommand runs over a contiguous section of the reference genome,
and that data are sorted on this chunk. We provide control over the size of any flanking region that is desired.

The method signature of a pipe command is below:

def pipe[X, Y <: GenomicRDD[X, Y], V <: InFormatter[T, U, V]](cmd: String,
files: Seq[String] =

→˓Seq.empty,
environment: Map[String,

→˓ String] = Map.empty,
flankSize: Int =

→˓0)(implicit tFormatterCompanion: InFormatterCompanion[T, U, V],

→˓xFormatter: OutFormatter[X],

→˓convFn: (U, RDD[X]) => Y,

→˓tManifest: ClassTag[T],

→˓xManifest: ClassTag[X]): Y

X is the type of the records that are returned (e.g., for reads, AlignmentRecord) and Y is the type of the
GenomicRDD that is returned (e.g., for reads, AlignmentRecordRDD). As explicit parameters, we take:

• cmd: The command to run.

• files: Files to make available locally to each running command. These files can be referenced from cmd by
using $# syntax, where # is the number of the file in the files sequence (e.g., $0 is the head of the list, $1 is
the second file in the list, and so on).

• environment: Environment variable/value pairs to set locally for each running command.

• flankSize: The number of base pairs to flank each partition by, if piping genome aligned data.

Additionally, we take several important implicit parameters:

• tFormatter: The InFormatter that converts the data that is piped into the run command from the under-
lying GenomicRDD type.

• xFormatter: The OutFormatter that converts the data that is piped out of the run command back to
objects for the output GenomicRDD.

• convFn: A function that applies any necessary metadata conversions and creates a new GenomicRDD.

The tManifest and xManifest implicit parameters are Scala ClassTags and will be provided by the compiler.

What are the implicit parameters used for? For each of the genomic datatypes in ADAM, we support multiple legacy
genomic filetypes (e.g., reads can be saved to or read from BAM, CRAM, FASTQ, and SAM). The InFormatter
and OutFormatter parameters specify the format that is being read into or out of the pipe. We support the follow-
ing:
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• AlignmentRecordRDD:

• InFormatters: SAMInFormatter and BAMInFormatter write SAM or BAM out to a pipe.

• OutFormatter: AnySAMOutFormatter supports reading SAM and BAM from a pipe, with the exact
format autodetected from the stream.

• We do not support piping CRAM due to complexities around the reference-based compression.

• FeatureRDD:

• InFormatters: BEDInFormatter, GFF3InFormatter, GTFInFormatter, and
NarrowPeakInFormatter for writing features out to a pipe in BED, GFF3, GTF/GFF2, or Narrow-
Peak format, respectively.

• OutFormatters: BEDOutFormatter, GFF3OutFormatter, GTFOutFormatter, and
NarrowPeakInFormatter for reading features in BED, GFF3, GTF/GFF2, or NarrowPeak format
in from a pipe, respectively.

• FragmentRDD:

• InFormatter: InterleavedFASTQInFormatter writes FASTQ with the reads from a paired sequenc-
ing protocol interleaved in the FASTQ stream to a pipe.

• VariantContextRDD:

• InFormatter: VCFInFormatter writes VCF to a pipe.

• OutFormatter: VCFOutFormatter reads VCF from a pipe.

The convFn implementations are provided as implicit values in the ADAMContext. These conversion func-
tions are needed to adapt the metadata stored in a single GenomicRDD to the type of a different GenomicRDD
(e.g., if piping an AlignmentRecordRDD through a command that returns a VariantContextRDD, we will
need to convert the AlignmentRecordRDDs RecordGroupDictionary into an array of Samples for the
VariantContextRDD). We provide four implementations:

• ADAMContext.sameTypeConversionFn: For piped commands that do not change the type of the
GenomicRDD (e.g., AlignmentRecordRDD→ AlignmentRecordRDD).

• ADAMContext.readsToVCConversionFn: For piped commands that go from an
AlignmentRecordRDD to a VariantContextRDD.

• ADAMContext.fragmentsToReadsConversionFn: For piped commands that go from a
FragmentRDD to an AlignmentRecordRDD.

To put everything together, here is an example command. Here, we will run a command my_variant_caller,
which accepts one argument -R <reference>.fa, SAM on standard input, and outputs VCF on standard output:

// import RDD load functions and conversion functions
import org.bdgenomics.adam.rdd.ADAMContext._

// import functionality for piping SAM into pipe
import org.bdgenomics.adam.rdd.read.SAMInFormatter

// import functionality for reading VCF from pipe
import org.bdgenomics.adam.converters.DefaultHeaderLines
import org.bdgenomics.adam.rdd.variant.{
VariantContextRDD,
VCFOutFormatter

}

// load the reads
val reads = sc.loadAlignments("hdfs://mynamenode/my/read/file.bam")
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// define implicit informatter for sam
implicit val tFormatter = SAMInFormatter

// define implicit outformatter for vcf
// attach all default headerlines
implicit val uFormatter = new VCFOutFormatter(DefaultHeaderLines.allHeaderLines)

// run the piped command
// providing the explicit return type (VariantContextRDD) will ensure that
// the correct implicit convFn is selected
val variantContexts: VariantContextRDD = reads.pipe("my_variant_caller -R $0",

files = Seq("hdfs://mynamenode/my/reference/genome.fa"))

// save to vcf
variantContexts.saveAsVcf("hdfs://mynamenode/my/variants.vcf")

In this example, we assume that my_variant_caller is on the PATH on each machine in our cluster. We suggest
several different approaches:

• Install the executable on the local filesystem of each machine on your cluster.

• Install the executable on a shared file system (e.g., NFS) that is accessible from every machine in your cluster,
and make sure that necessary prerequisites (e.g., python, dynamically linked libraries) are installed across each
node on your cluster.

• Run the command using a container system such as Docker or Singularity.

Using the Pipe API from Java

The pipe API example above uses Scala’s implicit system and type inference to make it easier to use the pipe API.
However, we also provide a Java equivalent. There are several changes:

• The out-formatter is provided explicitly.

• Instead of implicitly providing the companion object for the in-formatter, you provide the class of the in-
formatter. This allows us to access the companion object via reflection.

• For the conversion function, you can provide any function that implements the org.apache.spark.api.
java.Function2 interface. We provide common functions equivalent to those in ADAMContext in org.
bdgenomics.adam.api.java.GenomicRDDConverters.

To run the Scala example code above using Java, we would write:

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.bdgenomics.adam.models.VariantContext
import org.bdgenomics.adam.rdd.read.AlignmentRecordRDD;
import org.bdgenomics.adam.rdd.read.SAMInFormatter;
import org.bdgenomics.adam.rdd.variant.VariantContextRDD;
import org.bdgenomics.adam.rdd.variant.VCFOutFormatter;
import org.bdgenomics.adam.api.java.AlignmentRecordToVariantContextConverter;

class PipeRunner {

VariantContextRDD runPipe(AlignmentRecordRDD reads) {
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List<String> files = new ArrayList<String>();
files.add("hdfs://mynamenode/my/reference/genome.fa")

Map<String, String> env = new HashMap<String, String>();

return reads.pipe<VariantContext,
VariantContextRDD,
SAMInFormatter>("my_variant_caller -R $0",

files,
env,
0,
SAMInFormatter.class,
new VCFOutFormatter,
new AlignmentRecordToVariantContextConverter);

}
}

Using the Pipe API from Python/R

Python and R follow the same calling style as the Java pipe API, but the in/out-formatter and conversion functions are
passed by name. We then use the classnames that are passed to the function to create the objects via reflection. To run
the example code from above in Python, we would write:

from bigdatagenomics.adam.adamContext import ADAMContext

ac = ADAMContext(self.sc)
reads = ac.loadAlignments("hdfs://mynamenode/my/read/file.bam")

variants = reads.pipe("my_variant_caller -R $0",
"org.bdgenomics.adam.rdd.read.SAMInFormatter",
"org.bdgenomics.adam.rdd.variant.VCFOutFormatter",
"org.bdgenomics.adam.api.java.

→˓AlignmentRecordToVariantContextConverter",
files=[ "hdfs://mynamenode/my/reference/genome.fa" ])

In R, we would write:

library(bdg.adam)

ac <- ADAMContext(sc)

reads <- loadAlignments(ac, "hdfs://mynamenode/my/read/file.bam")

files <- list("hdfs://mynamenode/my/reference/genome.fa")

variants <- pipe(reads,
"my_variant_caller -R $0",
"org.bdgenomics.adam.rdd.read.SAMInFormatter",
"org.bdgenomics.adam.rdd.variant.VCFOutFormatter",
"org.bdgenomics.adam.api.java.

→˓AlignmentRecordToVariantContextConverter",
files=files)
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1.1.23 Building Downstream Applications

ADAM is packaged so that it can be used interactively via the ADAM shell, called from the command line interface
(CLI), or included as a library when building downstream applications.

This document covers three patterns for building applications downstream of ADAM:

• Extend the ADAM CLI by adding new commands

• Extend the ADAM CLI by adding new commands in an external repository

• Use ADAM as a library in new applications

1.1.24 Extend the ADAM CLI by adding new commands

ADAM’s CLI is implemented in the adam-cli Apache Maven module of the bdgenomics/adam repository, one .scala
source file for each CLI action (e.g. TransformAlignments.scala for the transformAlignments action), and a main class
(ADAMMain.scala) that assembles and delegates to the various CLI actions.

To add a new command:

1. Extend Args4jBase to specify arguments

2. Extend BDGCommandCompanion

3. Build ADAM and run the new command

Extend Args4jBase to specify arguments

Extend Args4jBase class to specify arguments to your new command. Arguments are defined using the args4j
library. If reading from or writing to Parquet, consider including Parquet arguments via with ParquetArgs.

class MyCommandArgs extends Args4jBase with ParquetArgs {
@Argument(required = true, metaVar = "INPUT", usage = "Input to my command", index

→˓= 0)
var inputPath: String = null

}

Extend BDGCommandCompanion

Extend BDGCommandCompanion object to specify the command name and description. The apply method asso-
ciates MyCommandArgs defined above with MyCommand.

object MyCommand extends BDGCommandCompanion {
val commandName = "myCommand"
val commandDescription = "My command example."

def apply(cmdLine: Array[String]) = {
new MyCommand(Args4j[MyCommandArgs](cmdLine))

}
}

Extend BDGSparkCommand class and implement the run(SparkContext) method. The MyCommandArgs
class defined above is provided in the constructor and specifies the CLI command for BDGSparkCommand. We must
define a companion object because the command cannot run without being added to the list of accepted commands
described below. For access to an slf4j Logger via the log field, mix in the org.bdgenomics.utils.misc.Logging trait
by adding with Logging to the class definition.
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class MyCommand(protected val args: MyCommandArgs) extends
→˓BDGSparkCommand[MyCommandArgs] with Logging {
val companion = MyCommand

def run(sc: SparkContext) {
log.info("Doing something...")
// do something

}
}

Add the new command to the default list of commands in org.bdgenomics.adam.cli.ADAMMain.

...
val defaultCommandGroups =
List(

CommandGroup(
"ADAM ACTIONS",
List(
MyCommand,
CountReadKmers,
CountContigKmers,

...

Build ADAM and run the new command

Build ADAM and run the new command via adam-submit.

$ mvn install
$ ./bin/adam-submit --help
Using ADAM_MAIN=org.bdgenomics.adam.cli.ADAMMain
Using SPARK_SUBMIT=/usr/local/bin/spark-submit

e 888~-_ e e e
d8b 888 \ d8b d8b d8b

/Y88b 888 | /Y88b d888bdY88b
/ Y88b 888 | / Y88b / Y88Y Y888b

/____Y88b 888 / /____Y88b / YY Y888b
/ Y88b 888_-~ / Y88b / Y888b

Usage: adam-submit [<spark-args> --] <adam-args>

Choose one of the following commands:

ADAM ACTIONS
myCommand : My command example.

countKmers : Counts the k-mers/q-mers from a read dataset.
countContigKmers : Counts the k-mers/q-mers from a read dataset.

...

$ ./bin/adam-submit myCommand input.foo

Then consider creating an issue to start the process toward including the new command in ADAM! Please see CON-
TRIBUTING.md before opening a new pull request.
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1.1.25 Extend the ADAM CLI by adding new commands in an external repository

To extend the ADAM CLI by adding new commands in an external repository, create a new object with a
main(args: Array[String]) method that delegates to ADAMMain and provides additional command(s) via
its constructor.

import org.bdgenomics.adam.cli.{ ADAMMain, CommandGroup }
import org.bdgenomics.adam.cli.ADAMMain.defaultCommandGroups

object MyCommandsMain {
def main(args: Array[String]) {
val commandGroup = List(CommandGroup("MY COMMANDS", List(MyCommand1, MyCommand2)))
new ADAMMain(defaultCommandGroups.union(commandGroup))(args)

}
}

Build the project and run the new external commands via adam-submit, specifying ADAM_MAIN environment
variable as the new main class, and providing the jar file in the Apache Spark --jars argument.

Note the -- argument separator between Apache Spark arguments and ADAM arguments.

$ ADAM_MAIN=MyCommandsMain \
adam-submit \
--jars my-commands.jar \
-- \
--help

Using ADAM_MAIN=MyCommandsMain
Using SPARK_SUBMIT=/usr/local/bin/spark-submit

e 888~-_ e e e
d8b 888 \ d8b d8b d8b

/Y88b 888 | /Y88b d888bdY88b
/ Y88b 888 | / Y88b / Y88Y Y888b

/____Y88b 888 / /____Y88b / YY Y888b
/ Y88b 888_-~ / Y88b / Y888b

Usage: adam-submit [<spark-args> --] <adam-args>

Choose one of the following commands:
...

MY COMMANDS
myCommand1 : My command example 1.
myCommand2 : My command example 2.

$ ADAM_MAIN=MyCommandsMain \
adam-submit \
--jars my-commands.jar \
-- \
myCommand1 input.foo

A complete example of this pattern can be found in the heuermh/adam-commands repository.

1.1.26 Use ADAM as a library in new applications

To use ADAM as a library in new applications:
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Create an object with a main(args: Array[String]) method and handle command line arguments. Feel free
to use the args4j library or any other argument parsing library.

object MyExample {
def main(args: Array[String]) {
if (args.length < 1) {

System.err.println("at least one argument required, e.g. input.foo")
System.exit(1)

}
}

}

Create an Apache Spark configuration SparkConf and use it to create a new SparkContext. The following
serialization configuration needs to be present to register ADAM classes. If any additional Kyro serializers need to be
registered, create a registrator that delegates to the ADAM registrator. You might want to provide your own serializer
registrator if you need custom serializers for a class in your code that either has a complex structure that Kryo fails to
serialize properly via Kryo’s serializer inference, or if you want to require registration of all classes in your application
to improve performance.

val conf = new SparkConf()
.setAppName("MyCommand")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.set("spark.kryo.registrator", "org.bdgenomics.adam.serialization.

→˓ADAMKryoRegistrator")
.set("spark.kryo.referenceTracking", "true")

val sc = new SparkContext(conf)
// do something

Configure the new application build to create a fat jar artifact with ADAM and its transitive dependencies included.
For example, this maven-shade-plugin configuration would work for an Apache Maven build.

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<configuration>
<createDependencyReducedPom>false</createDependencyReducedPom>
<filters>

<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>

</excludes>
</filter>

</filters>
</configuration>
<executions>
<execution>

<phase>package</phase>
<goals>

<goal>shade</goal>
</goals>
<configuration>

<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.

→˓ServicesResourceTransformer" />
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</transformers>
</configuration>

</execution>
</executions>

</plugin>

Build the new application and run via spark-submit.

spark-submit \
--class MyCommand \
target/my-command.jar \
input.foo

A complete example of this pattern can be found in the heuermh/adam-examples repository.

Writing your own registrator that calls the ADAM registrator

As we do in ADAM, an application may want to provide its own Kryo serializer registrator. The custom registrator
may be needed in order to register custom serializers, or because the application’s configuration requires all serializers
to be registered. In either case, the application will need to provide its own Kryo registrator. While this registrator can
manually register ADAM’s serializers, it is simpler to call to the ADAM registrator from within the registrator. As an
example, this pattern looks like the following code:

import com.esotericsoftware.kryo.Kryo
import org.apache.spark.serializer.KryoRegistrator
import org.bdgenomics.adam.serialization.ADAMKryoRegistrator

class MyCommandKryoRegistrator extends KryoRegistrator {

private val akr = new ADAMKryoRegistrator()

override def registerClasses(kryo: Kryo) {

// register adam's requirements
akr.registerClasses(kryo)

// ... register any other classes I need ...
}

}

1.1.27 Core Algorithms

Read Preprocessing Algorithms

In ADAM, we have implemented the three most-commonly used pre-processing stages from the GATK pipeline (De-
Pristo et al. 2011). In this section, we describe the stages that we have implemented, and the techniques we have used
to improve performance and accuracy when running on a distributed system. These pre-processing stages include:

• Duplicate Removal: During the process of preparing DNA for sequencing, reads are duplicated by errors during
the sample preparation and polymerase chain reaction stages. Detection of duplicate reads requires matching
all reads by their position and orientation after read alignment. Reads with identical position and orientation are
assumed to be duplicates. When a group of duplicate reads is found, each read is scored, and all but the highest
quality read are marked as duplicates. We have validated our duplicate removal code against Picard (The Broad
Institute of Harvard and MIT 2014), which is used by the GATK for Marking Duplicates. Our implementation
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is fully concordant with the Picard/GATK duplicate removal engine, except we are able to perform duplicate
marking for chimeric read pairs.2 Specifically, because Picard’s traversal engine is restricted to processing
linearly sorted alignments, Picard mishandles these alignments. Since our engine is not constrained by the
underlying layout of data on disk, we are able to properly handle chimeric read pairs.

• Local Realignment: In local realignment, we correct areas where variant alleles cause reads to be locally mis-
aligned from the reference genome.3 In this algorithm, we first identify regions as targets for realignment. In
the GATK, this identification is done by traversing sorted read alignments. In our implementation, we fold over
partitions where we generate targets, and then we merge the tree of targets. This process allows us to eliminate
the data shuffle needed to achieve the sorted ordering. As part of this fold, we must compute the convex hull of
overlapping regions in parallel. We discuss this in more detail later in this section. After we have generated the
targets, we associate reads to the overlapping target, if one exists. After associating reads to realignment targets,
we run a heuristic realignment algorithm that works by minimizing the quality-score weighted number of bases
that mismatch against the reference.

• Base Quality Score Recalibration (BQSR): During the sequencing process, systemic errors occur that lead to
the incorrect assignment of base quality scores. In this step, we label each base that we have sequenced with an
error covariate. For each covariate, we count the total number of bases that we saw, as well as the total number
of bases within the covariate that do not match the reference genome. From this data, we apply a correction by
estimating the error probability for each set of covariates under a beta-binomial model with uniform prior. We
have validated the concordance of our BQSR implementation against the GATK. Across both tools, only 5000
of the 180B bases (< 0.0001%) in the high-coverage NA12878 genome dataset differ. After investigating this
discrepancy, we have determined that this is due to an error in the GATK, where paired-end reads are mishandled
if the two reads in the pair overlap.

• ShuffleRegionJoin Load Balancing: Because of the non-uniform distribution of regions in mapped reads, joining
two genomic datasets can be difficult or impossible when neither dataset fits completely on a single node. To
reduce the impact of data skew on the runtime of joins, we implemented a load balancing engine in ADAM’s
ShuffleRegionJoin core. This load balancing is a preprocessing step to the ShuffleRegionJoin and improves
performance by 10–100x. The first phase of the load balancer is to sort and repartition the left dataset evenly
across all partitions, regardless of the mapped region. This offers significantly better distribution of the data than
the standard binning approach. After rebalancing the data, we copartition the right dataset with the left based
on the region bounds of each partition. Once the data has been copartitioned, it is sorted locally and the join is
performed.

In the rest of this section, we discuss the high level implementations of these algorithms.

1.1.28 BQSR Implementation

Base quality score recalibration seeks to identify and correct correlated errors in base quality score estimates. At a
high level, this is done by associating sequenced bases with possible error covariates, and estimating the true error rate
of this covariate. Once the true error rate of all covariates has been estimated, we then apply the corrected covariate.

Our system is generic and places no limitation on the number or type of covariates that can be applied. A covariate
describes a parameter space where variation in the covariate parameter may be correlated with a sequencing error. We
provide two common covariates that map to common sequencing errors (Nakamura et al. 2011):

• CycleCovariate: This covariate expresses which cycle the base was sequenced in. Read errors are known to
occur most frequently at the start or end of reads.

• DinucCovariate: This covariate covers biases due to the sequence context surrounding a site. The two-mer
ending at the sequenced base is used as the covariate parameter value.

2 In a chimeric read pair, the two reads in the read pairs align to different chromosomes; see Li et al (Li and Durbin 2010).
3 This is typically caused by the presence of insertion/deletion (INDEL) variants; see DePristo et al (DePristo et al. 2011).
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To generate the covariate observation table, we aggregate together the number of observed and error bases per covari-
ate. The two algorithms below demonstrate this process.

𝑟𝑒𝑎𝑑← the read to observe
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠← covariates to use for recalibration

𝑠𝑖𝑡𝑒𝑠← sites of known variation
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠← ∅

for𝑏𝑎𝑠𝑒 ∈ 𝑟𝑒𝑎𝑑

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒← 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒(𝑏𝑎𝑠𝑒)

if isUnknownSNP(𝑏𝑎𝑠𝑒, 𝑠𝑖𝑡𝑒𝑠)
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛← 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(1, 1)

else
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛← 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(1, 0)

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠.append((𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒, 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛))
return𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑟𝑒𝑎𝑑𝑠← input dataset
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠← covariates to use for recalibration

𝑠𝑖𝑡𝑒𝑠← known variant sites
𝑠𝑖𝑡𝑒𝑠.broadcast()

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠← 𝑟𝑒𝑎𝑑𝑠.map(𝑟𝑒𝑎𝑑⇒ emitObservations(𝑟𝑒𝑎𝑑, 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠, 𝑠𝑖𝑡𝑒𝑠))
𝑡𝑎𝑏𝑙𝑒← 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠.aggregate(CovariateTable(),mergeCovariates)

return𝑡𝑎𝑏𝑙𝑒

The Observation class stores the number of bases seen and the number of errors seen. For example,
Observation(1, 1) creates an Observation object that has seen one base, which was an erroneous base.

Once we have computed the observations that correspond to each covariate, we estimate the observed base quality
using the below equation. This represents a Bayesian model of the mismatch probability with Binomial likelihood and
a Beta(1, 1) prior.

E(𝑃𝑒𝑟𝑟|𝑐𝑜𝑣) =
errors(𝑐𝑜𝑣) + 1

observations(𝑐𝑜𝑣) + 2

After these probabilities are estimated, we go back across the input read dataset and reconstruct the quality scores of
the read by using the covariate assigned to the read to look into the covariate table.

1.1.29 Indel Realignment Implementation

Although global alignment will frequently succeed at aligning reads to the proper region of the genome, the local
alignment of the read may be incorrect. Specifically, the error models used by aligners may penalize local alignments
containing INDELs more than a local alignment that converts the alignment to a series of mismatches. To correct for
this, we perform local realignment of the reads against consensus sequences in a three step process. In the first step,
we identify candidate sites that have evidence of an insertion or deletion. We then compute the convex hull of these
candidate sites, to determine the windows we need to realign over. After these regions are identified, we generate
candidate haplotype sequences, and realign reads to minimize the overall quantity of mismatches in the region.

Realignment Target Identification

To identify target regions for realignment, we simply map across all the reads. If a read contains INDEL evidence, we
then emit a region corresponding to the region covered by that read.
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Convex-Hull Finding

Once we have identified the target realignment regions, we must then find the maximal convex hulls across the set of
regions. For a set R of regions, we define a maximal convex hull as the largest region hat{r} that satisfies the following
properties:

𝑟 = ∪𝑟𝑖∈�̂�𝑟𝑖

𝑟 ∩ 𝑟𝑖 ̸= ∅,∀𝑟𝑖 ∈ �̂�

�̂� ⊂ 𝑅

In our problem, we seek to find all of the maximal convex hulls, given a set of regions. For genomics, the convexity
constraint is trivial to check: specifically, the genome is assembled out of reference contigs that define disparate 1-D
coordinate spaces. If two regions exist on different contigs, they are known not to overlap. If two regions are on a
single contig, we simply check to see if they overlap on that contig’s 1-D coordinate plane.

Given this realization, we can define the convex hull Algorithm, which is a data parallel algorithm for finding the
maximal convex hulls that describe a genomic dataset.

𝑑𝑎𝑡𝑎← input dataset
𝑟𝑒𝑔𝑖𝑜𝑛𝑠← 𝑑𝑎𝑡𝑎.map(𝑑𝑎𝑡𝑎⇒ generateTarget(𝑑𝑎𝑡𝑎))
𝑟𝑒𝑔𝑖𝑜𝑛𝑠← 𝑟𝑒𝑔𝑖𝑜𝑛𝑠.sort()

ℎ𝑢𝑙𝑙𝑠← 𝑟𝑒𝑔𝑖𝑜𝑛𝑠.fold(𝑟1, 𝑟2 ⇒ mergeTargetSets(𝑟1, 𝑟2))

The generateTarget function projects each datapoint into a Red-Black tree that contains a single region. The
performance of the fold depends on the efficiency of the merge function. We achieve efficient merges with the tail-call
recursive mergeTargetSets function that is described in the hull set merging algorithm.

𝑓𝑖𝑟𝑠𝑡← first target set to merge
𝑠𝑒𝑐𝑜𝑛𝑑← second target set to merge

if𝑓𝑖𝑟𝑠𝑡 = ∅ ∧ 𝑠𝑒𝑐𝑜𝑛𝑑 = ∅
return∅

else if𝑓𝑖𝑟𝑠𝑡 = ∅
return𝑠𝑒𝑐𝑜𝑛𝑑

else if𝑠𝑒𝑐𝑜𝑛𝑑 = ∅
return𝑓𝑖𝑟𝑠𝑡

return
iflast(𝑓𝑖𝑟𝑠𝑡) ∩ head(𝑠𝑒𝑐𝑜𝑛𝑑) = ∅

return𝑓𝑖𝑟𝑠𝑡+ 𝑠𝑒𝑐𝑜𝑛𝑑

else
𝑚𝑒𝑟𝑔𝑒𝐼𝑡𝑒𝑚← (last(𝑓𝑖𝑟𝑠𝑡) ∪ head(𝑠𝑒𝑐𝑜𝑛𝑑))
𝑚𝑒𝑟𝑔𝑒𝑆𝑒𝑡← allButLast(𝑓𝑖𝑟𝑠𝑡) ∪𝑚𝑒𝑟𝑔𝑒𝐼𝑡𝑒𝑚

𝑡𝑟𝑖𝑚𝑆𝑒𝑐𝑜𝑛𝑑← allButFirst(𝑠𝑒𝑐𝑜𝑛𝑑)
return mergeTargetSets(𝑚𝑒𝑟𝑔𝑒𝑆𝑒𝑡, 𝑡𝑟𝑖𝑚𝑆𝑒𝑐𝑜𝑛𝑑)

The set returned by this function is used as an index for mapping reads directly to realignment targets.

Candidate Generation and Realignment

Once we have generated the target set, we map across all the reads and check to see if the read overlaps a realignment
target. We then group together all reads that map to a given realignment target; reads that do not map to a target are
randomly assigned to a “null” target. We do not attempt realignment for reads mapped to null targets.
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To process non-null targets, we must first generate candidate haplotypes to realign against. We support several pro-
cesses for generating these consensus sequences:

• Use known INDELs: Here, we use known variants that were provided by the user to generate consensus se-
quences. These are typically derived from a source of common variants such as dbSNP (Sherry et al. 2001).

• Generate consensuses from reads: In this process, we take all INDELs that are contained in the alignment of a
read in this target region.

• Generate consensuses using Smith-Waterman: With this method, we take all reads that were aligned in the
region and perform an exact Smith-Waterman alignment (Smith and Waterman 1981) against the reference in
this site. We then take the INDELs that were observed in these realignments as possible consensuses.

From these consensuses, we generate new haplotypes by inserting the INDEL consensus into the reference sequence
of the region. Per haplotype, we then take each read and compute the quality score weighted Hamming edit distance
of the read placed at each site in the consensus sequence. We then take the minimum quality score weighted edit
versus the consensus sequence and the reference genome. We aggregate these scores together for all reads against this
consensus sequence. Given a consensus sequence c, a reference sequence R, and a set of reads mathbf{r}, we calculate
this score using the equation below.

𝑞𝑖,𝑗 =

𝑙𝑟𝑖∑︁
𝑘=0

𝑄𝑘𝐼[𝑟𝐼(𝑘) = 𝑐(𝑗 + 𝑘)]∀𝑟𝑖 ∈ R, 𝑗 ∈ {0, . . . , 𝑙𝑐 − 𝑙𝑟𝑖}

𝑞𝑖,𝑅 =

𝑙𝑟𝑖∑︁
𝑘=0

𝑄𝑘𝐼[𝑟𝐼(𝑘) = 𝑐(𝑗 + 𝑘)]∀𝑟𝑖 ∈ R, 𝑗 = pos(𝑟𝑖|𝑅)

𝑞𝑖 = min(𝑞𝑖,𝑅, min
𝑗∈{0,...,𝑙𝑐−𝑙𝑟𝑖}

𝑞𝑖,𝑗)

𝑞𝑐 =
∑︁
𝑟𝑖∈r

𝑞𝑖

In the above equation, s(i) denotes the base at position i of sequence s, and l_s denotes the length of sequence s. We
pick the consensus sequence that minimizes the q_c value. If the chosen consensus has a log-odds ratio (LOD) that
is greater than 5.0 with respect to the reference, we realign the reads. This is done by recomputing the CIGAR and
MDTag for each new alignment. Realigned reads have their mapping quality score increased by 10 in the Phred scale.

1.1.30 Duplicate Marking Implementation

Reads may be duplicated during sequencing, either due to clonal duplication via PCR before sequencing, or due to
optical duplication while on the sequencer. To identify duplicated reads, we apply a heuristic algorithm that looks
at read fragments that have a consistent mapping signature. First, we bucket together reads that are from the same
sequenced fragment by grouping reads together on the basis of read name and record group. Per read bucket, we then
identify the 5’ mapping positions of the primarily aligned reads. We mark as duplicates all read pairs that have the
same pair alignment locations, and all unpaired reads that map to the same sites. Only the highest scoring read/read
pair is kept, where the score is the sum of all quality scores in the read that are greater than 15.

1.1.31 ShuffleRegionJoin Load Balancing

ShuffleRegionJoins perform a sort-merge join on distributed genomic data. The current standard for distributing
genomic data are to use a binning approach where ranges of genomic data are assigned to a particular partition. This
approach has a significant limitation that we aim to solve: no matter how fine-grained the bins created, they can never
resolve extremely skewed data. ShuffleRegionJoin also requires that the data be sorted, so we keep track of the fact
that knowledge of sort through the join so we can reuse this knowledge downstream.

The first step in ShuffleRegionJoin is to sort and balance the data. This is done with a sampling method and the data
are sorted if it was not previously. When we shuffle the data, we also store the region ranges for all the data on this
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partition. Storing these partition bounds allows us to copartition the right dataset by assigning all records to a partition
if the record falls within the partition bounds. After the right data are colocated with the correct records in the left
dataset, we perform the join locally on each partition.

Maintaining the sorted knowledge and partition bounds are extremely useful for downstream applications that can take
advantage of sorted data. Subsequent joins, for example, will be much faster because the data are already relatively
balanced and sorted. Additional set theory and aggregation primitives, such as counting nearby regions, grouping and
clustering nearby regions, and finding the set difference will all benefit from the sorted knowledge because each of
these primitives requires that the data be sorted first.

• genindex

• search
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